Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

被引:7
|
作者
Quental, P. B. [1 ]
Policarpo, H. [1 ]
Luis, R. [1 ]
Varela, P. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2016年 / 87卷 / 11期
关键词
D O I
10.1063/1.4960493
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS (R) Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system. Published by AIP Publishing.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Remote maintenance of in-vessel components for ITER
    Burgess, T.
    Haange, R.
    Hager, R.
    Hattori, Y.
    Herndon, J.
    Holloway, C.
    Maisonnier, D.
    Martin, E.
    Matsuhira, N.
    Shibanuma, K.
    Sironi, M.
    Tada, E.
    Tesini, A.
    Fusion Engineering and Design, 1998, 42 (Pt C): : 455 - 461
  • [22] Remote maintenance of in-vessel components for ITER
    Burgess, T
    Haange, R
    Hager, R
    Hattori, Y
    Herndon, J
    Holloway, C
    Maisonnier, D
    Martin, E
    Matsuhira, N
    Shibanuma, K
    Sironi, M
    Tada, E
    Tesini, A
    FUSION ENGINEERING AND DESIGN, 1998, 42 : 455 - 461
  • [23] OVERVIEW OF THE DESIGN OF IN-VESSEL COMPONENTS FOR ITER
    PARKER, RR
    FUSION TECHNOLOGY, 1994, 26 (03): : 273 - 283
  • [24] Integration of ITER in-vessel diagnostic components in the vacuum vessel
    Encheva, A.
    Bertalot, L.
    Macklin, B.
    Vayakis, G.
    Walker, C.
    FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) : 736 - 742
  • [25] Detailed electromagnetic analyses of the ITER in-vessel components during plasma disruptions
    Roccella, M
    Gasparotto, M
    Lattanzi, D
    Rita, C
    Chiocchio, S
    Elio, F
    Miki, N
    Lucca, F
    17TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, VOLS 1 AND 2, 1998, : 349 - 352
  • [26] Design standard issues for ITER in-vessel components
    Majumdar, Saurin
    Fusion Engineering and Design, 1995, 29 (pt C): : 158 - 163
  • [27] Assessment and selection of materials for ITER in-vessel components
    Kalinin, G
    Barabash, V
    Cardella, A
    Dietz, J
    Ioki, K
    Matera, R
    Santoro, RT
    Tivey, R
    JOURNAL OF NUCLEAR MATERIALS, 2000, 283 : 10 - 19
  • [28] DEVELOPMENT OF CODES & STANDARDS FOR ITER IN-VESSEL COMPONENTS
    Couso, Daniel
    Fano, Jose
    Fernandez, Felicidad
    Fernandez, Elena
    Guirao, Julio A.
    Lastra, Jose L.
    Martinez, Victor J.
    Ordieres, Javier
    Vazquez, Ivan
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE VOL 1: CODES AND STANDARDS, 2012, : 313 - +
  • [29] Development of in-vessel components of the microfission chamber for ITER
    Ishikawa, M.
    Kondoh, T.
    Ookawa, K.
    Fujita, K.
    Yamauchi, M.
    Hayakawa, A.
    Nishitani, T.
    Kusama, Y.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10):
  • [30] Remote handling and maintenance of ITER in-vessel components
    Burgess, T
    Haange, R
    Hattori, Y
    Heckendorn, F
    Ozaki, F
    Shibanuma, K
    Tesini, A
    Janeschitz, G
    Martin, E
    Sironi, M
    Herndon, J
    Maisonnier, D
    Tada, E
    FUSION TECHNOLOGY, 1998, 34 (03): : 1144 - 1150