Graphene oxide/Ag nanoparticle/WS2 nanosheet heterostructures for surface-enhanced Raman spectroscopy

被引:7
|
作者
Wang, L. U. Y. A. O. [1 ]
Liu, M. I. N. G. J. I. N. [1 ]
Chen, B. I. A. O. [1 ]
Pan, J. I. E. [1 ]
Wang, S. H. U. Y. U. N. [1 ]
Zhang, C. H. A. O. [1 ]
LI, Z. H. E. N. [1 ]
Peng, Q. I. A. N. Q. I. A. N. [1 ]
Xiu, X. I. A. N. W. U. [1 ]
机构
[1] Shandong Normal Univ, Inst Mat & Clean Energy, Collaborat Innovat Ctr Light Manipulat & Applicat, Sch Phys & Elect, Jinan 250358, Peoples R China
关键词
HIGH-PERFORMANCE; SILVER NANOPARTICLES; SERS; SCATTERING; EFFICIENCY; EVOLUTION; HYBRID; LAYERS; WS2;
D O I
10.1364/OME.469588
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Combing the merits of metals and semiconductors,with superior plasmon resonance effects and high charge mobility, 3D-nanocomposite structures consisting of graphene oxide (GO), noble metal nanostructures, and two-dimensional transition metal sulfides (2D-TMDS) are an important topic in surface-enhanced Raman scattering (SERS) research. This paper presents a novel GO/Ag NPs (silver nanoparticles)/WS2 composite SERS substrate, and electric field simulation by COMSOL software. The GO/Ag/WS2 composite substrate shows very high SERS detective sensitivity and stability to probe molecules such as rhodamine 6 g (R6G), crystal violet (CV), methylene blue (MB) and deoxyribonucleic acid (DNA). The SERS sensitivity can reach 10-12 M, the relative standard deviation (RSD) is 8.24%, and the enhancement factor (EF) is approximately 6.60 x 1010 for R6G, which promoted the implementation of the SERS technique in the area of quantitative profiling and testing.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:3718 / 3730
页数:13
相关论文
共 50 条
  • [41] The Theory of Surface-Enhanced Raman Spectroscopy on Organic Semiconductors: Graphene
    Lombardi, John R.
    NANOMATERIALS, 2022, 12 (16)
  • [42] Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene
    Mhlanga, Nikiwe
    Ntho, Thabang A.
    Chauke, Hleko
    Sikhwivhilu, Lucky
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [43] Nanoparticle metal - Semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy
    Sun, Zhihua
    Wang, Chunxu
    Yang, Jingxiu
    Zhao, Bing
    Lombardi, John R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15): : 6093 - 6098
  • [44] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062
  • [45] Surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 1
  • [46] Surface-enhanced Raman spectroscopy
    Jürgen Popp
    Thomas Mayerhöfer
    Analytical and Bioanalytical Chemistry, 2009, 394 : 1717 - 1718
  • [47] Surface-enhanced Raman spectroscopy
    Morneau, Dominique
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [48] Surface-Enhanced Raman Spectroscopy
    Stiles, Paul. L.
    Dieringer, Jon A.
    Shah, Nilain C.
    Van Duyne, Richard R.
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (601-626) : 601 - 626
  • [49] Surface-enhanced Raman spectroscopy
    Han, Xiao Xia
    Rodriguez, Rebeca S.
    Haynes, Christy L.
    Ozaki, Yukihiro
    Zhao, Bing
    NATURE REVIEWS METHODS PRIMERS, 2022, 1 (01):
  • [50] Surface-enhanced Raman spectroscopy
    Xiao Xia Han
    Rebeca S. Rodriguez
    Christy L. Haynes
    Yukihiro Ozaki
    Bing Zhao
    Nature Reviews Methods Primers, 1