ITER prototype fast plant system controller

被引:19
|
作者
Goncalves, B. [1 ]
Sousa, J. [1 ]
Carvalho, B. B. [1 ]
Rodrigues, A. P. [1 ]
Correia, M. [1 ]
Batista, A. [1 ]
Vega, J. [2 ]
Ruiz, M. [3 ]
Lopez, J. M. [3 ]
Castro, R. [2 ]
Wallander, A. [4 ]
Utzel, N. [4 ]
Makijarvi, P. [4 ]
Simrock, S. [4 ]
Neto, A. [1 ]
Alves, D. [1 ]
Valcarcel, D. F. [1 ]
Lousa, P. [5 ]
Piedade, F. [5 ]
Fernandes, L. [5 ]
机构
[1] Inst Super Tecn, Lab Assoc, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal
[2] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain
[3] Univ Politecn Madrid, Grp Invest Instrumentac & Acust Aplicada, E-28040 Madrid, Spain
[4] ITER Org, CS 90 046, F-13067 St Paul Les Durance, France
[5] INOV, Lisbon, Portugal
关键词
ATCA; PXIe; Data acquisition; Control system; Plasma control; PLASMA CONTROL; FUSION;
D O I
10.1016/j.fusengdes.2011.04.062
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
ITER CODAC Design identified the need for slow and fast control plant systems, based respectively on industrial automation technology with maximum sampling rates below 100 Hz. and on embedded technology with higher sampling rates and more stringent real-time requirements. The fast system is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and high performance networks (HPN). This contribution presents the engineering design of two prototypes of a fast plant system controller (FPSC), specialized for data acquisition, constrained by ITER technological choices. This prototyping activity contributes to the Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. The prototypes will be built using two different form factors, PXIe and ATCA, with the aim of comparing the implementations. The presented solution took into consideration channel density, synchronization, resolution, sampling rates and the needs for signal conditioning such as filtering and galvanic isolation. The integration of the two controllers in the standard CODAC environment is also presented and discussed. Both controllers contain an EPICS IOC providing the interface to the mini-CODAC which willte used for all testing activities. The alpha version of the FPSC is also presented. (C) 2011 Association Euratom-IST, Instituto Superior Tecnico. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:556 / 560
页数:5
相关论文
共 50 条
  • [21] ABLATIVE FAST PYROLYSIS - PROTOTYPE PLANT
    JOHNSON, DA
    MACLEAN, D
    FELLER, J
    DIEBOLD, J
    CHUM, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 74 - CELL
  • [22] Development of the prototype pneumatic transfer system for ITER neutron activation system
    Cheon, M. S.
    Seon, C. R.
    Pak, S.
    Lee, H. G.
    Bertalot, L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10):
  • [23] ITER Construction - Plant System Integration
    Tada, E.
    Matsuda, S.
    2ND ITER INTERNATIONAL SUMMER SCHOOL: CONFINEMENT, 2009, 1095 : 103 - +
  • [24] Prototype of Fast Data Acquisition Systems for ITER Divertor Thomson Scattering Diagnostic
    Ivanenko, S.
    Khilchenko, A.
    Puryga, E.
    Zubarev, P.
    Kvashnin, A.
    Ovchar, V.
    Ivanova, A.
    Kotelnikov, A.
    2014 19TH IEEE-NPSS REAL TIME CONFERENCE (RT), 2014,
  • [25] Intelligent Platform Management Controller for Nuclear Fusion Fast Plant System Controllers
    Rodrigues, A. P.
    Correia, M.
    Batista, A.
    Sousa, J.
    Goncalves, B.
    Correia, C. M. B.
    Varandas, C. A. F.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (04) : 1733 - 1737
  • [26] ITER ICH Transmission Line and Matching System Prototype Development
    Rasmussen, D. A.
    Swain, D. W.
    Goulding, R. H.
    Pesavento, P. V.
    Peters, B.
    Fredd, E. H.
    Hosea, J.
    Greenough, N.
    RADIO FREQUENCY POWER IN PLASMAS: PROCEEDINGS OF THE 19TH TOPICAL CONFERENCE, 2011, 1406
  • [27] The water detritiation system of the ITER tritium plant
    Iwai, Y
    Misaki, Y
    Hayashi, T
    Yamanishi, T
    Konishi, S
    Nishi, M
    Ninomiya, R
    Yanagimachi, S
    Senrui, S
    Yoshida, H
    FUSION SCIENCE AND TECHNOLOGY, 2002, 41 (03) : 1126 - 1130
  • [28] Data acquisition system prototype for Thomson scattering diagnostic of ITER divertor
    Ivanenko, S.
    Zubarev, P.
    Kvashnin, A.
    Puryga, E.
    Ivanova, A.
    Khilchenko, A.
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 1056 - 1059
  • [29] Methodology for the deployment of ITER Fast Plant Interlock system. Use case: ITER Poloidal Field and Central Solenoid coil's power converter protection system
    Barrera, E.
    Astrain, M.
    Prieto, I.
    Ruiz, M.
    Fernandez-Hernando, J. L.
    Pedica, R.
    Barcala, J. M.
    Oller, J. C.
    Afif, M.
    FUSION ENGINEERING AND DESIGN, 2018, 129 : 73 - 77
  • [30] Digital valve system for ITER remote handling - Design and prototype testing
    Siivonen, Lauri
    Paloniitty, Miika
    Linjama, Matti
    Sairiala, Harri
    Esque, Salvador
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 1637 - 1641