An Actor-Critic Reinforcement Learning Approach for Energy Harvesting Communications Systems

被引:7
|
作者
Masadeh, Ala'eddin [1 ]
Wang, Zhengdao [1 ]
Kamal, Ahmed E. [1 ]
机构
[1] Iowa State Univ ISU, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Energy harvesting; Markov decision process; actor-critic; reinforcement learning; neural networks;
D O I
10.1109/icccn.2019.8846912
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Energy harvesting communications systems are able to provide high quality communications services using green energy sources. This paper presents an autonomous energy harvesting communications system that is able to adapt to any environment, and optimize its behavior with experience to maximize the valuable received data. The considered system is a point-to-point energy harvesting communications system consisting of a source and a destination, and working in an unknown and uncertain environment. The source is an energy harvesting node capable of harvesting solar energy and storing it in a finite capacity battery. Energy can be harvested, stored, and used from continuous ranges of energy values. Channel gains can take any value within a continuous range. Since exact information about future channel gains and harvested energy is unavailable, an architecture based on actor-critic reinforcement learning is proposed to learn a close-to-optimal transmission power allocation policy. The actor uses a stochastic parameterized policy to select actions at states stochastically. The policy is modeled by a normal distribution with a parameterized mean and standard deviation. The actor uses policy gradient to optimize the policy's parameters. The critic uses a three layer neural network to approximate the action-value function, and to evaluate the optimized policy. Simulation results evaluate the proposed architecture for actor-critic learning, and shows its ability to improve its performance with experience.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A Sandpile Model for Reliable Actor-Critic Reinforcement Learning
    Peng, Yiming
    Chen, Gang
    Zhang, Mengjie
    Pang, Shaoning
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 4014 - 4021
  • [22] Reinforcement learning with actor-critic for knowledge graph reasoning
    Linli ZHANG
    Dewei LI
    Yugeng XI
    Shuai JIA
    ScienceChina(InformationSciences), 2020, 63 (06) : 223 - 225
  • [23] Dynamic Bandwidth Allocation Scheme for Wireless Networks with Energy Harvesting Using Actor-Critic Deep Reinforcement Learning
    Quang Vinh Do
    Koo, Insoo
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 138 - 142
  • [24] Actor-Critic Reinforcement Learning for Control With Stability Guarantee
    Han, Minghao
    Zhang, Lixian
    Wang, Jun
    Pan, Wei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 6217 - 6224
  • [25] Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
    Wu, Yue
    Zhai, Shuangfei
    Srivastava, Nitish
    Susskind, Joshua
    Zhang, Jian
    Salakhutdinov, Ruslan
    Goh, Hanlin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [26] Deep Actor-Critic Reinforcement Learning for Anomaly Detection
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [27] MARS: Malleable Actor-Critic Reinforcement Learning Scheduler
    Baheri, Betis
    Tronge, Jacob
    Fang, Bo
    Li, Ang
    Chaudhary, Vipin
    Guan, Qiang
    2022 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2022,
  • [28] Averaged Soft Actor-Critic for Deep Reinforcement Learning
    Ding, Feng
    Ma, Guanfeng
    Chen, Zhikui
    Gao, Jing
    Li, Peng
    COMPLEXITY, 2021, 2021
  • [29] Optimal Energy Management of Energy Internet: A Distributed Actor-Critic Reinforcement Learning Method
    Cheng, Yijun
    Peng, Jun
    Gu, Xin
    Jiang, Fu
    Li, Heng
    Liu, Weirong
    Huang, Zhiwu
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 521 - 526
  • [30] Reinforcement learning for automatic quadrilateral mesh generation: A soft actor-critic approach
    Pan, Jie
    Huang, Jingwei
    Cheng, Gengdong
    Zeng, Yong
    NEURAL NETWORKS, 2023, 157 : 288 - 304