Design Optimization of Silicon and Lithium Niobate Hybrid Integrated Traveling-Wave Mach-Zehnder Modulator

被引:15
|
作者
Cai, Junming [1 ]
Guo, Changjian [1 ]
Lu, Chao [2 ]
Lau, Alan Pak Tao [3 ]
Chen, Pengxin [1 ]
Liu, Liu [4 ]
机构
[1] South China Normal Univ, Higher Educ Megactr, Ctr Opt & Electromagnet Res,South China Acad Adv, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[2] Hong Kong Polytech Univ, Photon Res Ctr, Dept Elect & Informat Engn, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Photon Res Ctr, Dept Elect Engn, Hong Kong, Peoples R China
[4] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Coll Opt Sci & Engn, Int Res Ctr Adv Photon,Ctr Opt & Electromagnet Re, Hangzhou 310058, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2021年 / 13卷 / 04期
关键词
Lithium niobate; hybride Mach-Zehnder modulator; NITRIDE;
D O I
10.1109/JPHOT.2021.3090768
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lithium niobate, due to its strong electro-optic effect, is an excellent material for high-performance optical modulators. Hybrid integration of thin film lithium niobate and silicon photonic circuits makes it possible to fully exploit potentials of the two material systems. In this paper, we introduce a detailed design procedure for silicon and lithium niobate hybrid integrated modulator using coplanar line electrodes based on Mach-Zehnder interferometer push-pull configuration. A multiphysics model for the crossing section of the modulation section is proposed and analyzed. The results show that optimizing solely the V pi L product would not lead to the best 3-dB bandwidth for a certain half-wave voltage due to the increased microwave losses. There exists an optimal ground-signal electrode gap value, which is about 8-9 mu m for the present modulator structure. For these optimized structures, 3-dB bandwidths can reach 45 GHz and 137 GHz with half-wave voltages of 2 V and 4 V, respectively, for a lithium niobate waveguide total thickness of 600 nm and a ridge height of 200 nm.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Different effects on bandwidth for traveling-wave quantum well electroabsorption modulator and bulk Mach-Zehnder electrooptic
    Zhou, JY
    Zhou, XP
    Jiang, XQ
    Wang, MH
    APOC 2003: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS; MATERIALS, ACTIVE DEVICES, AND OPTICAL AMPLIFIERS, PTS 1 AND 2, 2004, 5280 : 403 - 407
  • [22] A 50-GHz Bandwidth Traveling-Wave Mach-Zehnder Modulator With Built-In Feedback Equalization
    Gao, Jing
    Zhu, Kehan
    Wu, Hui
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (12) : 3872 - 3881
  • [23] 50 Gb/s Silicon Traveling Wave Mach-Zehnder Modulator near 1300 nm
    Streshinsky, Matthew
    Ding, Ran
    Novack, Ari
    Liu, Yang
    Tu, Xiaoguang
    Lim, Andy Eu-Jin
    Chen, Edward Koh Sing
    Lo, Patrick Guo-Qiang
    Baehr-Jones, Tom
    Hochberg, Michael
    2014 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2014,
  • [24] CALCULATION OF THE CROSSTALK BETWEEN MACH-ZEHNDER INTERFEROMETERS WITH TRAVELING-WAVE ELECTRODES
    CHAO, FL
    WANG, WS
    FIBER AND INTEGRATED OPTICS, 1991, 10 (03) : 231 - 238
  • [25] Tunable V-Cavity Laser Monolithically Integrated With Traveling Wave Mach-Zehnder Modulator
    Chen, Qi
    Wang, Zhongwen
    Zhao, Jiasheng
    Meng, Jianjun
    Song, Guocai
    He, Jian-Jun
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2022, 34 (19) : 1046 - 1049
  • [26] Hybrid Silicon and Lithium Niobate Mach-Zehnder Modulators with Silicon Thermal-optic Phase Shifter
    Sun, Shihao
    Xu, Mengyue
    He, Mingbo
    Cai, Xinlun
    2019 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2019,
  • [27] Equivalent circuit model of the traveling wave electrode for lithium niobate thin film Mach-Zehnder modulators
    Guo, Yanting
    Li, Lianyan
    Zhang, Yunshan
    Sun, Shiyuan
    Quan, Qihong
    Shi, Yuechun
    APPLIED OPTICS, 2024, 63 (03) : 617 - 623
  • [28] Integrated Lithium Niobate Mach-Zehnder Interferometers for Advanced Modulation Formats
    Kawanishi, Tetsuya
    Sakamoto, Takahide
    Chiba, Alkito
    IEICE TRANSACTIONS ON ELECTRONICS, 2009, E92C (07): : 915 - 921
  • [29] TRAVELING-WAVE ELECTROOPTICAL MODULATOR IN INHOMOGENEOUS LITHIUM-NIOBATE
    ARMENISE, MN
    DESARIO, M
    ALTA FREQUENZA, 1983, 52 (03): : 212 - 214
  • [30] Plasmonic Lithium Niobate Mach-Zehnder Modulators
    Thomaschewski, Martin
    Zenin, Vladimir A.
    Fiedler, Saskia
    Wolff, Christian
    Bozhevolnyi, Sergey I.
    NANO LETTERS, 2022, 22 (16) : 6471 - 6475