More about the Grassmann tensor renormalization group

被引:11
|
作者
Akiyama, Shinichiro [1 ]
Kadoh, Daisuke [2 ,3 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan
[2] Natl Tsing Hua Univ, Natl Ctr Theoret Sci, Phys Div, Hsinchu 30013, Taiwan
[3] Keio Univ, Res & Educ Ctr Nat Sci, Yokohama, Kanagawa 2238521, Japan
关键词
Lattice field theory simulation;
D O I
10.1007/JHEP10(2021)188
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We derive a general formula of the tensor network representation for d-dimensional lattice fermions with ultra-local interactions, including Wilson fermions, staggered fermions, and domain-wall fermions. The Grassmann tensor is concretely defined with auxiliary Grassmann variables that play a role in bond degrees of freedom. Compared to previous works, our formula does not refer to the details of lattice fermions and is derived by using the singular value decomposition for the given Dirac matrix without any ad-hoc treatment for each fermion. We numerically test our formula for free Wilson and staggered fermions and find that it properly works for them. We also find that Wilson fermions show better performance than staggered fermions in the tensor renormalization group approach, unlike the Monte Carlo method.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Bilayer linearized tensor renormalization group approach for thermal tensor networks
    Dong, Yong-Liang
    Chen, Lei
    Liu, Yun-Jing
    Li, Wei
    PHYSICAL REVIEW B, 2017, 95 (14)
  • [22] Tensor renormalization group with randomized singular value decomposition
    Morita, Satoshi
    Igarashi, Ryo
    Zhao, Hui-Hai
    Kawashima, Naoki
    PHYSICAL REVIEW E, 2018, 97 (03)
  • [23] Renormalization group contraction of tensor networks in three dimensions
    Garcia-Saez, Artur
    Latorre, Jose I.
    PHYSICAL REVIEW B, 2013, 87 (08):
  • [24] TENSOR RENORMALIZATION GROUP APPROACH TO A LATTICE BOSON MODEL
    Shimizu, Yuya
    MODERN PHYSICS LETTERS A, 2012, 27 (06)
  • [25] Tensor renormalization group approach to classical dimer models
    Roychowdhury, Krishanu
    Huang, Ching-Yu
    PHYSICAL REVIEW B, 2015, 91 (20):
  • [26] Renormalization Group Flows of Hamiltonians Using Tensor Networks
    Bal, M.
    Marien, M.
    Haegeman, J.
    Verstraete, F.
    PHYSICAL REVIEW LETTERS, 2017, 118 (25)
  • [27] Density Matrix Renormalization Group with Tensor Processing Units
    Ganahl, Martin
    Beall, Jackson
    Hauru, Markus
    Lewis, Adam G. M.
    Wojno, Tomasz
    Yoo, Jae Hyeon
    Zou, Yijian
    Vidal, Guifre
    PRX QUANTUM, 2023, 4 (01):
  • [28] Tensor renormalization group algorithms with a projective truncation method
    Nakamura, Yoshifumi
    Oba, Hideaki
    Takeda, Shinji
    PHYSICAL REVIEW B, 2019, 99 (15)
  • [29] A parallel computing method for the higher order tensor renormalization group
    Yamashita, Takumi
    Sakurai, Tetsuya
    COMPUTER PHYSICS COMMUNICATIONS, 2022, 278
  • [30] Tensor Renormalization Group at Low Temperatures: Discontinuity Fixed Point
    Kennedy, Tom
    Rychkov, Slava
    ANNALES HENRI POINCARE, 2024, 25 (01): : 773 - 841