Anharmonic oscillator driven by additive Ornstein-Uhlenbeck noise

被引:9
|
作者
Mallick, K [1 ]
Marcq, P
机构
[1] Ctr Etud Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] Univ Aix Marseille 1, Inst Rech Phenomenes, F-13384 Marseille, France
关键词
random processes; Fokker-Planck equations; colored noise; stochastic analysis methods;
D O I
10.1007/s10955-004-2135-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an analytical study of a nonlinear oscillator subject to an additive Ornstein-Uhlenbeck noise. Known results are mainly perturbative and are restricted to the large dissipation limit (obtained by neglecting the inertial term) or to a quasi-white noise (i.e., a noise with vanishingly small correlation time). Here, in contrast, we study the small dissipation case (we retain the inertial term) and consider a noise with finite correlation time. Our analysis is non perturbative and based on a recursive adiabatic elimination scheme a reduced effective Langevin dynamics for the slow action variable is obtained after averaging out the fast angular variable. In the conservative case, we show that the physical observables grow algebraically with time and calculate the associated anomalous scaling exponents and generalized diffusion constants. In the case of small dissipation, we derive an analytic expression of the stationary probability distribution function (PDF) which differs from the canonical Boltzmann-Gibbs distribution. Our results are in excellent agreement with numerical simulations.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [31] Parameter estimation from an Ornstein-Uhlenbeck process with measurement noise
    Carter, Simon
    Mujica-Parodi, Lilianne R.
    Strey, Helmut H.
    PHYSICAL REVIEW E, 2024, 110 (04)
  • [32] ORNSTEIN-UHLENBECK AND RENORMALIZATION SEMIGROUPS
    Faris, William G.
    MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (03) : 389 - 405
  • [33] Nonparametric inference for Levy-driven Ornstein-Uhlenbeck processes
    Jongbloed, G
    Van der Meulen, FH
    Van der Vaart, AW
    BERNOULLI, 2005, 11 (05) : 759 - 791
  • [34] Cox point processes driven by Ornstein-Uhlenbeck type processes
    Lechnerova, R.
    Helisova, K.
    Benes, V.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2008, 10 (03) : 315 - 335
  • [35] Stochastic Ornstein-Uhlenbeck capacitors
    Eliazar, I
    Klafter, J
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (1-2) : 177 - 198
  • [36] Spherical Ornstein-Uhlenbeck Processes
    Michael Wilkinson
    Alain Pumir
    Journal of Statistical Physics, 2011, 145
  • [37] A GENERALIZED ORNSTEIN-UHLENBECK PROCESS
    WITTIG, TA
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (01) : 29 - 43
  • [38] On exit times of Levy-driven Ornstein-Uhlenbeck processes
    Borovkov, Konstantin
    Novikov, Alexander
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1517 - 1525
  • [39] The squared Ornstein-Uhlenbeck market
    Aquilina, J
    Rogers, LCG
    MATHEMATICAL FINANCE, 2004, 14 (04) : 487 - 513
  • [40] CRITICAL ORNSTEIN-UHLENBECK PROCESSES
    PAVON, M
    APPLIED MATHEMATICS AND OPTIMIZATION, 1986, 14 (03): : 265 - 276