Nonthermal melting of charge density wave order via nucleation in VTe2

被引:10
|
作者
Tanimura, Hiroshi [1 ]
Okamoto, Norihiko L. [1 ]
Homma, Takao [1 ]
Sato, Yusuke [1 ]
Ishii, Akihiro [2 ]
Takamura, Hitoshi [2 ]
Ichitsubo, Tetsu [1 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Grad Sch Engn, Dept Mat Sci, Sendai, Miyagi 9808579, Japan
关键词
EXCITATION; STATE;
D O I
10.1103/PhysRevB.105.245402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultrafast optical control of phase change materials is of great importance from fundamental and practical points of view. Transition-metal dichalcogenides are of significant interest in this research field because of the photoinduced phase transition originating from the nonthermal melting of their charge density wave (CDW) orders. In this work, we investigated the ultrafast optical response of VTe2 by using broadband coherent optical phonon spectroscopy with subpicosecond time resolution. With an increase of laser-excitation fluence, a characteristic oscillation around 4.4 THz appeared in the transient reflectivity change. This suggests photoinduction of the high-temperature phase, i.e., a CDW-melt state, of VTe2 within a picosecond. Such an ultrafast transition would be induced by a purely electronic effect, but as with thermodynamic melting, it is strongly suggested that the phase transition dynamics induced spatially by laser irradiation proceeds inhomogeneously via a nucleation mode.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Environmental Control of Charge Density Wave Order in Monolayer 2H-TaS2
    Hall, Joshua
    Ehlen, Niels
    Berges, Jan
    van Loon, Erik
    van Efferen, Camiel
    Murray, Clifford
    Rosner, Malte
    Li, Jun
    Senkovskiy, Boris V.
    Hell, Martin
    Rolf, Matthias
    Heider, Tristan
    Asensio, Maria C.
    Avila, Jose
    Plucinski, Lukasz
    Wehling, Tim
    Grueneis, Alexander
    Michely, Thomas
    ACS NANO, 2019, 13 (09) : 10210 - 10220
  • [42] Strongly enhanced charge-density-wave order in monolayer NbSe2
    Xi, Xiaoxiang
    Zhao, Liang
    Wang, Zefang
    Berger, Helmuth
    Forro, Laszlo
    Shan, Jie
    Mak, Kin Fai
    NATURE NANOTECHNOLOGY, 2015, 10 (09) : 765 - +
  • [43] Origin of the multiple charge density wave order in 1T-VSe2
    Si, J. G.
    Lu, W. J.
    Wu, H. Y.
    Lv, H. Y.
    Liang, X.
    Li, Q. J.
    Sun, Y. P.
    PHYSICAL REVIEW B, 2020, 101 (23)
  • [44] Competition of superconductivity and charge density wave order in NaxTaS2 single crystals
    Fang, L
    Zou, PY
    Wang, Y
    Tang, L
    Xu, Z
    Chen, H
    Dong, C
    Shan, L
    Wen, HH
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2005, 6 (07) : 736 - 739
  • [45] Absence of bulk charge density wave order in the normal state of UTe2
    Kengle, C. S.
    Vonka, J.
    Francoual, S.
    Chang, J.
    Abbamonte, P.
    Janoschek, M.
    Rosa, P. F. S.
    Simeth, W.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [46] Effect of strain on charge density wave order in the Holstein model
    Cohen-Stead, B.
    Costa, N. C.
    Khatami, E.
    Scalettar, R. T.
    PHYSICAL REVIEW B, 2019, 100 (04)
  • [47] Charge Order Induced in an Orbital Density-Wave State
    Singh, Dheeraj Kumar
    Takimoto, Tetsuya
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (04)
  • [48] Holographic imaging of the complex charge density wave order parameter
    Pasztor, Arpad
    Scarfato, Alessandro
    Spera, Marcello
    Barreteau, Celine
    Giannini, Enrico
    Renner, Christoph
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [49] Ultrafast Melting of a Charge-Density Wave in the Mott Insulator 1T-TaS2
    Hellmann, S.
    Beye, M.
    Sohrt, C.
    Rohwer, T.
    Sorgenfrei, F.
    Redlin, H.
    Kallaene, M.
    Marczynski-Buehlow, M.
    Hennies, F.
    Bauer, M.
    Foehlisch, A.
    Kipp, L.
    Wurth, W.
    Rossnagel, K.
    PHYSICAL REVIEW LETTERS, 2010, 105 (18)
  • [50] Charge-density-wave melting in the one-dimensional Holstein model
    Stolpp, Jan
    Herbrych, Jacek
    Dorfner, Florian
    Dagotto, Elbio
    Heidrich-Meisner, Fabian
    PHYSICAL REVIEW B, 2020, 101 (03)