Ancestry inference using reference labeled clusters of haplotypes

被引:4
|
作者
Wang, Yong [1 ]
Song, Shiya [1 ]
Schraiber, Joshua G. [1 ]
Sedghifar, Alisa [1 ]
Byrnes, Jake K. [1 ]
Turissini, David A. [1 ]
Hong, Eurie L. [1 ]
Ball, Catherine A. [1 ]
Noto, Keith [1 ]
机构
[1] AncestryDNA, San Francisco, CA 94107 USA
关键词
ARCHes; Ancestry inference; Haplotype modeling; Local ancestry; HMM; RFMix;
D O I
10.1186/s12859-021-04350-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background We present ARCHes, a fast and accurate haplotype-based approach for inferring an individual's ancestry composition. Our approach works by modeling haplotype diversity from a large, admixed cohort of hundreds of thousands, then annotating those models with population information from reference panels of known ancestry. Results The running time of ARCHes does not depend on the size of a reference panel because training and testing are separate processes, and the inferred population-annotated haplotype models can be written to disk and reused to label large test sets in parallel (in our experiments, it averages less than one minute to assign ancestry from 32 populations using 10 CPU). We test ARCHes on public data from the 1000 Genomes Project and the Human Genome Diversity Project (HGDP) as well as simulated examples of known admixture. Conclusions Our results demonstrate that ARCHes outperforms RFMix at correctly assigning both global and local ancestry at finer population scales regardless of the amount of population admixture.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Identifying novel microhaplotypes for ancestry inference
    Chen, Peng
    Zhu, Wenjia
    Tong, Fang
    Pu, Yan
    Yu, Youjia
    Huang, Shuainan
    Li, Zheng
    Zhang, Lin
    Liang, Weibo
    Chen, Feng
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2019, 133 (04) : 983 - 988
  • [32] Forensic inference of biogeographical ancestry from genotype: The Genetic Ancestry Lab
    McNevin, Dennis
    WILEY INTERDISCIPLINARY REVIEWS: FORENSIC SCIENCE, 2020, 2 (02):
  • [33] Ancestral inference from haplotypes and mutations
    Griffiths, Robert C.
    Tavare, Simon
    THEORETICAL POPULATION BIOLOGY, 2018, 122 : 12 - 21
  • [34] Application of machine learning for ancestry inference using multi-InDel markers
    Sun, Kuan
    Yao, Yining
    Yun, Libing
    Zhang, Chen
    Xie, Jianhui
    Qian, Xiaoqin
    Tang, Qiqun
    Sun, Luming
    FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2022, 59
  • [35] Assessing local ancestry inference using different sequencing assays and depth of coverage
    Motegi, Tomoki
    Campbell, Joshua D.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2023, 32 (12)
  • [36] Haplotypes, genetic distance and the inference of dispersal patterns using analysis of molecular variance
    Bird, Christopher E.
    Timmers, Molly A.
    Smouse, Peter E.
    Toonen, Robert J.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2012, 52 : E14 - E14
  • [37] Evaluation of two methods for computational HLA haplotypes inference using a real dataset
    Bettencourt, Bruno F.
    Santos, Margarida R.
    Fialho, Raquel N.
    Couto, Ana R.
    Peixoto, Maria J.
    Pinheiro, Joao P.
    Spinola, Helder
    Mora, Marian G.
    Santos, Cristina
    Brehm, Antonio
    Bruges-Armas, Jacome
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [38] Evaluation of two methods for computational HILA haplotypes inference using a real dataset
    Bettencourt, B. F.
    Fialho, R. N.
    Couto, A. R.
    Santos, M. R.
    Garrett, F.
    Brehm, A.
    Armas, J. Bruges
    TISSUE ANTIGENS, 2006, 67 (06): : 580 - 580
  • [39] Evaluation of two methods for computational HLA haplotypes inference using a real dataset
    Bruno F Bettencourt
    Margarida R Santos
    Raquel N Fialho
    Ana R Couto
    Maria J Peixoto
    João P Pinheiro
    Hélder Spínola
    Marian G Mora
    Cristina Santos
    António Brehm
    Jácome Bruges-Armas
    BMC Bioinformatics, 9
  • [40] Genomic Ancestry Inference of Admixed Population by Identifying Approximate Boundaries of Ancestry Change
    Alizadeh, F.
    Jazayeriy, H.
    Jazayeri, O.
    Vafaee, F.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2024, 37 (02): : 412 - 424