Revisiting cosmologies in teleparallelism

被引:21
|
作者
D'Ambrosio, Fabio [1 ]
Heisenberg, Lavinia [1 ]
Kuhn, Simon [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
cosmology; extensions of general relativity; teleparallelism;
D O I
10.1088/1361-6382/ac3199
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the most general field equations for cosmological spacetimes for theories of gravity based on non-linear extensions of the non-metricity scalar and the torsion scalar. Our approach is based on a systematic symmetry-reduction of the metric-affine geometry which underlies these theories. While for the simplest conceivable case the connection disappears from the field equations and one obtains the Friedmann equations of general relativity, we show that in f(Q) cosmology the connection generically modifies the metric field equations and that some of the connection components become dynamical. We show that f(Q) cosmology contains the exact general relativity solutions and also exact solutions which go beyond. In f(T) cosmology, however, the connection is completely fixed and not dynamical.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Teleparallelism by inhomogeneous dark fluid
    Gudekli, Ertan
    Myrzakul, Aizhan
    Myrzakulov, Ratbay
    ASTROPHYSICS AND SPACE SCIENCE, 2015, 359 (02)
  • [12] Teleparallelism in the algebraic approach to extended geometry
    Cederwall, Martin
    Palmkvist, Jakob
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
  • [13] DIRAC MATRICES, TELEPARALLELISM AND PARITY CONSERVATION
    GREEN, HS
    NUCLEAR PHYSICS, 1958, 7 (04): : 373 - 383
  • [14] An extension of teleparallelism and the geometrization of the electromagnetic field
    Formiga, J. B.
    Fonseca-Neto, J. B.
    Romero, C.
    PHYSICAL REVIEW D, 2013, 87 (06):
  • [15] The Hamilton-Jacobi approach to Teleparallelism
    Pimentel, BM
    Pompeia, PJ
    da Rocha-Neto, JF
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (09): : 981 - 992
  • [16] An axially symmetric scalar field and teleparallelism
    Korunur, M.
    Salti, M.
    Aydogdu, O.
    EUROPEAN PHYSICAL JOURNAL C, 2007, 50 (01): : 101 - 107
  • [17] Space-time defects and teleparallelism
    Maluf, JW
    Goya, A
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (23) : 5143 - 5154
  • [18] Teleparallelism in the algebraic approach to extended geometry
    Martin Cederwall
    Jakob Palmkvist
    Journal of High Energy Physics, 2022
  • [19] Riemann - Geometry with the retention of the term of teleparallelism.
    Einstein, A
    SITZUNGSBERICHTE DER PREUSSICHEN AKADEMIE DER WISSENSCHAFTEN PHYSIKALISCH-MATHEMATISCHE KLASSE, 1928, : 217 - 221
  • [20] The use of the teleparallelism connection in continuum mechanics
    Delphenich, D. H.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2016, 21 (10) : 1260 - 1275