Computing and using minimal polynomials

被引:4
|
作者
Abbott, John [1 ]
Bigatti, Anna Maria [2 ]
Palezzato, Elisa [2 ]
Robbiano, Lorenzo [2 ]
机构
[1] Univ Kassel, Inst Math, Kassel, Germany
[2] Univ Genoa, Dip Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
基金
欧盟地平线“2020”;
关键词
Minimal polynomial; Grobner bases; Modular methods; Radical; Maximal; Primary; GROBNER BASES; COMPUTATION; ALGORITHMS; SYSTEMS;
D O I
10.1016/j.jsc.2019.07.022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a zero-dimensional ideal I in a polynomial ring, many computations start by finding univariate polynomials in I. Searching for a univariate polynomial in I is a particular case of considering the minimal polynomial of an element in P/I. It is well known that minimal polynomials may be computed via elimination, therefore this is considered to be a "resolved problem". But being the key of so many computations, it is worth investigating its meaning, its optimization, its applications (e.g. testing if a zero-dimensional ideal is radical, primary or maximal). We present efficient algorithms for computing the minimal polynomial of an element of P/I. For the specific case where the coefficients are in Q, we show how to use modular methods to obtain a guaranteed result. We also present some applications of minimal polynomials, namely algorithms for computing radicals and primary decompositions of zero-dimensional ideals, and also for testing radicality and maximality. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:137 / 163
页数:27
相关论文
共 50 条
  • [41] GENERALIZED POLYNOMIALS OF MINIMAL NORM
    BARRAR, RB
    BOJANOV, BD
    LOEB, HL
    [J]. JOURNAL OF APPROXIMATION THEORY, 1989, 56 (01) : 91 - 100
  • [44] Algorithms for computing chromatic polynomials and chromatic index polynomials
    Hordofa, Lateram Zawuga
    Repalle, V. N. SrinivasaRao
    Ashebo, Mamo Abebe
    [J]. SCIENTIFIC AFRICAN, 2024, 24
  • [45] Minimal and maximal real roots of parametric polynomials using interval analysis
    Merlet, JP
    [J]. GLOBAL OPTIMIZATION AND CONSTRAINT SATISFACTION, 2003, 2861 : 71 - 86
  • [46] COMPUTING WITH EXPANSIONS IN GEGENBAUER POLYNOMIALS
    Keiner, Jens
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 2151 - 2171
  • [47] Computing Hilbert class polynomials
    Belding, Juliana
    Broker, Reinier
    Enge, Andreas
    Lauter, Kristin
    [J]. ALGORITHMIC NUMBER THEORY, 2008, 5011 : 282 - +
  • [48] Computing Sparse Multiples of Polynomials
    Mark Giesbrecht
    Daniel S. Roche
    Hrushikesh Tilak
    [J]. Algorithmica, 2012, 64 : 454 - 480
  • [49] Computing Sparse Multiples of Polynomials
    Giesbrecht, Mark
    Roche, Daniel S.
    Tilak, Hrushikesh
    [J]. ALGORITHMS AND COMPUTATION, PT I, 2010, 6506 : 266 - 278
  • [50] Computing Sparse Multiples of Polynomials
    Giesbrecht, Mark
    Roche, Daniel S.
    Tilak, Hrushikesh
    [J]. ALGORITHMICA, 2012, 64 (03) : 454 - 480