Case Selection Strategy Based on K-Means Clustering

被引:1
|
作者
Ayeldeen, Heba [1 ,2 ]
Hegazy, Osman [2 ]
Hassanien, Aboul Ella [1 ,2 ]
机构
[1] SRGE, Cairo, Egypt
[2] Cairo Univ, Fac Comp & Informat, Cairo, Egypt
关键词
Knowledge management; Semantic similarity; Case-based reasoning; K-means;
D O I
10.1007/978-81-322-2250-7_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge acquisition is considered as an extraordinary issue concerning organizations and decision makers nowadays. Learning from previous failures and successes saves plenty of time in understanding the problems and visualizing data. Case-based Reasoning (CBR) as a process is one of the most used methods to solve the problem of knowledge capture and data understanding. In this paper we proposed an approach for clustering theses documents based on CBR combined with lexical similarity and k-means algorithm for cluster-dependent keyword weighting. The cluster dependent keyword weighting help in partitioning and categorizing the theses documents into more meaningful categories. The proposed approach yield to 91.95 % increase of using CBR in comparison to human assessments.
引用
下载
收藏
页码:385 / 394
页数:10
相关论文
共 50 条
  • [21] A Median based External Initial Centroid Selection Method for K-means Clustering
    SampathPremkumar, M.
    Ganesh, S. Hari
    2017 2ND WORLD CONGRESS ON COMPUTING AND COMMUNICATION TECHNOLOGIES (WCCCT), 2017, : 143 - 146
  • [22] A GENERALIZED k-MEANS PROBLEM FOR CLUSTERING AND AN ADMM-BASED k-MEANS ALGORITHM
    Ling, Liyun
    Gu, Yan
    Zhang, Su
    Wen, Jie
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (06) : 2089 - 2115
  • [23] Multipath Detection based on K-means Clustering
    Savas, Caner
    Dovis, Fabio
    PROCEEDINGS OF THE 32ND INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2019), 2019, : 3801 - 3811
  • [24] Rough Entropy Based k-Means Clustering
    Malyszko, Dariusz
    Stepaniuk, Jaroslaw
    ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, PROCEEDINGS, 2009, 5908 : 406 - 413
  • [25] A Clustering Method Based on K-Means Algorithm
    Li, Youguo
    Wu, Haiyan
    INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 1104 - 1109
  • [26] Distributed Clustering Based on K-means and CPGA
    Zhou, Jun
    Liu, Zhijing
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 444 - 447
  • [27] A Novel MapReduce Based k-Means Clustering
    Sinha, Ankita
    Jana, Prasanta K.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND COMMUNICATION, 2017, 458 : 247 - 255
  • [28] Entropy Based Soft K-means Clustering
    Bai, Xue
    Luo, Siwei
    Zhao, Yibiao
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 107 - 110
  • [29] Locality Preserving Based K-Means Clustering
    Yang, Xiaohuan
    Wang, Xiaoming
    Tian, Yong
    Du, Yajun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 86 - 95