Auxiliary Top-Illumination in the Kretschmann-Raether Configuration: A Theoretical Study on the Surface Plasmon Resonance Response

被引:2
|
作者
Falamaki, Cavus [1 ]
Pashaki, Elahe Rastegar [2 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Chem Engn Dept, POB 15875-4413, Tehran, Iran
[2] Amirkabir Univ Technol, Tehran Polytech, Elect Engn Dept, POB 15875-4413, Tehran, Iran
来源
关键词
figure of merit; Kretschmann-Raether configuration; Lorentz-Drude model; sensors; surface plasmon resonance; top illumination; SENSITIVITY ENHANCEMENT; SENSOR; INTERFERENCE; CHIPS; GOLD;
D O I
10.1002/pssb.202000222
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A new variation of surface plasmon resonance (SPR) sensors design with Kretschmann-Raether (KR)-type configuration is presented. Using a rotational incident angle scanning platform, the conductor nanolayer is normally irradiated with an auxiliary unpolarized light beam from the dielectric side. Both illumination sources should have a coherence length much larger than their source/Au layer optical path. Beginning with a Lorentzian-type oscillator model, a general dispersion equation for the metal nanolayer is developed that incorporates interband transitions and polychromaticity of the top-illumination beam. SPR curves are then predicted based on the transfer-matrix method. Simulation results show that the top-illumination frequency and its relative amplitude with respect to the bottom laser beam may impart significant changes to the SPR curve. It is shown that the implementation of short-wave ultraviolet light (180 nm) may considerably improve the performance of SPR sensors in terms of the figure-of-merit. Larger wavelengths generally lead to performance deterioration. Based on the transverse magnetic solutions of the wave equation, a theoretical interpretation of the results is presented that confirms the strong effect of top illumination on the magnitude of the decay lengths in the conductor/dielectric and the propagation constant.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration
    Jiří Bulíř
    Tomáš Zikmund
    Michal Novotný
    Ján Lančok
    Ladislav Fekete
    Libor Juha
    [J]. Applied Physics A, 2016, 122
  • [22] Spectral Phase Shift of Surface Plasmon Resonance in the Kretschmann Configuration: Theory and Experiment
    Hlubina, Petr
    Ciprian, Dalibor
    [J]. PLASMONICS, 2017, 12 (04) : 1071 - 1078
  • [23] A Simple Simulation of Surface Plasmon Resonance in The Kretschmann Configuration Using Google Sheets
    Quang, N. K.
    Anh, N. P. Q.
    Hieu, H. C.
    [J]. JURNAL PENDIDIKAN FISIKA INDONESIA-INDONESIAN JOURNAL OF PHYSICS EDUCATION, 2020, 16 (02): : 83 - 91
  • [24] Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration
    Bulir, Jiri
    Zikmund, Tomas
    Novotny, Michal
    Lancok, Jan
    Fekete, Ladislav
    Juha, Libor
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (04):
  • [25] Surface Plasmon Resonance Sensor Based on Kretschmann Configuration for Dengue Virus Detection
    Aprilia, Lia
    Mayasari, Rina Dewi
    Yanza, Nabella
    Pambudi, Sabar
    Tarwadi
    Budi, Agus Setyo
    Nuryadi, Ratno
    [J]. 2022 INTERNATIONAL CONFERENCE ON RADAR, ANTENNA, MICROWAVE, ELECTRONICS, AND TELECOMMUNICATIONS (ICRAMET): EMERGING SCIENCE AND INDUSTRIAL INNOVATION IN ELECTRONICS AND TELECOMMUNICATION, 2022, : 175 - 178
  • [26] Material platform for realization of a "fiber-like" lossy mode resonance response in a simple Kretschmann-Raether geometry (vol 46, pg 3065, 2021)
    Goswami, Sumit
    Sharma, Ashwini Kumar
    [J]. OPTICS LETTERS, 2021, 46 (13) : 3279 - 3279
  • [27] Net lateral shift of reflected beam due to surface plasmon resonance in Kretschmann configuration
    Liu, Xiangmin
    Yang, Qingfen
    Zhu, Pengfei
    Zhang, Yanli
    Shi, Yan
    [J]. OPTIK, 2013, 124 (19): : 4026 - 4029
  • [28] Graphene-based Surface Plasmon Resonance Urea Biosensor using Kretschmann configuration
    Jamil, Nur Akmar
    Menon, P. Susthitha
    Said, Fairus Atida
    Tarumaraja, Kalaivani A.
    Mei, Gan Siew
    Majlis, Burhanuddin Yeop
    [J]. PROCEEDINGS OF THE 2017 IEEE REGIONAL SYMPOSIUM ON MICRO AND NANOELECTRONICS (RSM), 2017, : 112 - 115
  • [29] A fixed detector Kretschmann configuration optical system to study surface plasmon excitations
    Singh, Ankit K.
    Sharma, Suresh C.
    [J]. OPTICS AND LASER TECHNOLOGY, 2014, 56 : 256 - 262
  • [30] Electromagnetic Modeling of Surface Plasmon Resonance with Kretschmann Configuration for Biosensing Applications in a CMOS-compatible Interface
    Salazara, A.
    Camacho-Leon, S.
    Rossetto, O.
    Martinez-Chapa, S. O.
    [J]. PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXI, 2013, 8619