Characterization of dimensional stability for materials used in ultra-stable structures

被引:6
|
作者
Kulkarni, Soham [1 ]
Uminska, Ada A. [1 ]
Sanjuan, Jose [1 ]
George, Daniel [1 ]
Gleason, Joseph [1 ]
Hollis, Harold [1 ]
Fulda, Paul [1 ]
Mueller, Guido [1 ]
Monroe, James A. [2 ]
McAllister, Jeremy S. [2 ]
Gavrilyuk, Ilya [3 ]
Baskaran, Yeshodhara [4 ]
Kroedel, Matthias [4 ]
机构
[1] Univ Florida, 2001 Museum Rd, Gainesville, FL 32611 USA
[2] ALLVAR, 501 Graham Rd, College Stn, TX 77845 USA
[3] Quartus Engn, San Diego, CA 92121 USA
[4] ECM Engn Ceram Mat GmbH, Bleichbach 12, D-85452 Moosinning, Germany
基金
美国国家航空航天局;
关键词
ULE; ALLVAR Alloy; CESIC; length stability; CTE;
D O I
10.1117/12.2594661
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Modern observatories including ultra-stable spectrographs, optical telescopes and gravitational wave observatories rely on ultra-stable structures to meet their science objectives. These structures must exhibit pm to nm level length stability over a few seconds to a few hours and mu m-level length stability over mission duration of several years in some cases. The use of ultra-low CTE glass substrates provide the required stability while being highly fragile, having limited adaptability while driving turnaround times longer. We characterized structures made using materials that can provide the required stability while improving on the adaptability, turnaround times, structural mass and strength. These include a compound structure made using ALLVAR Alloy, a metal with a negative CTE, a second structure made of HB-Cesic, a full-ULE structure and a metal-ULE hybrid structure. In this work, we present a comparative analysis of the measured length noise and the long-term length stability for these structures.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Ultra-stable flashlamp-pumped laser
    Brachmann, A
    Clendenin, J
    Galetto, T
    Maruyama, T
    Sodja, J
    Turner, J
    Woods, M
    SPIN 2002, 2003, 675 : 1093 - 1097
  • [42] Physicists discover key to ultra-stable bearings
    不详
    PHYSICS WORLD, 2013, 26 (04) : 5 - 5
  • [43] The Ultra-Stable Magnet of the Mark II Experiment
    Tommasini, D.
    Baumann, H.
    Eichenberger, A.
    Vorotszhov, A.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (04)
  • [44] Note: Ultra-stable digitally controlled oven
    Vorobyev, N.
    Imbaud, J.
    Abbe, P.
    Sthal, F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (02):
  • [45] Ultra-stable crystal ovens and simple characterisation
    Sthal, F.
    Galliou, S.
    Abbe, P.
    Vacheret, X.
    Cibiel, G.
    ELECTRONICS LETTERS, 2007, 43 (16) : 900 - 901
  • [46] ULTRA-STABLE SAPPHIRE RESONATOR-OSCILLATOR
    LUITEN, AN
    MANN, AG
    GILES, AJ
    BLAIR, DG
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1993, 42 (02) : 439 - 443
  • [47] MODELING AND SIMULATION OF AN ULTRA-STABLE CRYOSTAT FOR NAHUAL
    Sosa-Cabrera, D.
    Fuentes, F. J.
    EMSS 2009: 21ST EUROPEAN MODELING AND SIMULATION SYMPOSIUM, VOL I, 2009, : 216 - 221
  • [48] Generating an ultra-stable microwave in the drop tower
    Resch, Andreas
    Laemmerzahl, Claus
    Herrmann, Sven
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [49] LOW-VOLTAGE REFERENCE IS ULTRA-STABLE
    DUBOW, J
    ELECTRONICS, 1974, 47 (03): : 133 - 134
  • [50] Ultra-stable ZnO nanobelts in electrochemical environments
    Hong, Mengyu
    Meng, Jingjing
    Yu, Huihui
    Du, Junli
    Ou, Yang
    Liao, Qingliang
    Kang, Zhuo
    Zhang, Zheng
    Zhang, Yue
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (01) : 430 - 437