Context-Aware Collaborative Filtering Using Context Similarity: An Empirical Comparison

被引:5
|
作者
Zheng, Yong [1 ]
机构
[1] IIT, Coll Comp, Dept Informat Technol & Management, Chicago, IL 60616 USA
关键词
recommender systems; context-aware; context similarity; collaborative filtering; RECOMMENDER SYSTEMS; PREFERENCE;
D O I
10.3390/info13010042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recommender systems can assist with decision-making by delivering a list of item recommendations tailored to user preferences. Context-aware recommender systems additionally consider context information and adapt the recommendations to different situations. A process of context matching, therefore, enables the system to utilize rating profiles in the matched contexts to produce context-aware recommendations. However, it suffers from the sparsity problem since users may not rate items in various context situations. One of the major solutions to alleviate the sparsity issue is measuring the similarity of contexts and utilizing rating profiles with similar contexts to build the recommendation model. In this paper, we summarize the context-aware collaborative filtering methods using context similarity, and deliver an empirical comparison based on multiple context-aware data sets.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Context-Similarity Collaborative Filtering Recommendation
    Hiep Xuan Huynh
    Nghia Quoc Phan
    Nghi Mong Pham
    Van-Huy Pham
    Le Hoang Son
    Abdel-Basset, Mohamed
    Ismail, Mahmoud
    [J]. IEEE ACCESS, 2020, 8 : 33342 - 33351
  • [42] Dynamic Context-aware Adaptation of Mobile Phone incoming Call Indication Using Context Similarity
    Miraoui, Moeiz
    Tadj, Chakib
    Belgacem, Hanen
    [J]. WORLD CONGRESS ON COMPUTER & INFORMATION TECHNOLOGY (WCCIT 2013), 2013,
  • [43] DTCMF: Dynamic Trust-based Context-aware Matrix Factorization for Collaborative Filtering
    Li, Jiyun
    Yang, Rongyuan
    Jiang, Linlin
    [J]. 2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 914 - 919
  • [44] Context-aware IoT Service Recommendation: A Deep Collaborative Filtering-based Approach
    Wang, Zhen
    Sun, Chang-Ai
    Aiello, Marco
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2022), 2022, : 150 - 159
  • [45] Context-Aware News Recommendation System: Incorporating Contextual Information and Collaborative Filtering Techniques
    Alabduljabbar, Reham
    Almazrou, Halah
    Aldawod, Amaal
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [46] Context-Aware Recommendations in Decentralized, Item-Based Collaborative Filtering on Mobile Devices
    Woerndl, Wolfgang
    Muehe, Henrik
    Rothlehner, Stefan
    Moegele, Korbinian
    [J]. MOBILE COMPUTING, APPLICATIONS AND SERVICES, 2010, 35 : 383 - +
  • [47] Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction
    Zhang, Bangzuo
    Zhang, Haobo
    Sun, Xiaoxin
    Feng, Guozhong
    He, Chunguang
    [J]. IEEE ACCESS, 2019, 7 : 3826 - 3835
  • [48] Context-Aware News Recommendation System: Incorporating Contextual Information and Collaborative Filtering Techniques
    Reham Alabduljabbar
    Halah Almazrou
    Amaal Aldawod
    [J]. International Journal of Computational Intelligence Systems, 16
  • [49] Extending Content-Boosted Collaborative Filtering for Context-aware, Mobile Event Recommendations
    Herzog, Daniel
    Woerndl, Wolfgang
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2 (WEBIST), 2016, : 293 - 303
  • [50] Context-Aware QoS Prediction With Neural Collaborative Filtering for Internet-of-Things Services
    Gao, Honghao
    Xu, Yueshen
    Yin, Yuyu
    Zhang, Weipeng
    Li, Rui
    Wang, Xinheng
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (05) : 4532 - 4542