Single-layer Decoupling Networks for Circulant Symmetric Arrays

被引:1
|
作者
Coetzee, Jacob C. [1 ]
Cordwell, James D. [1 ]
Underwood, Elizabeth [1 ]
Waite, Shauna L. [1 ]
机构
[1] Queensland Univ Technol, Sch Engn Syst, Brisbane, Qld 4001, Australia
关键词
Adaptive arrays; Antenna array feeds; Antenna arrays; Decoupling networks; Mutual coupling;
D O I
10.4103/0256-4602.81235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reduced element spacing in antenna arrays gives rise to strong mutual coupling between array elements and may cause significant performance degradation. These effects can be alleviated by introducing a decoupling network consisting of interconnected reactive elements. The existing design approach for the synthesis of a decoupling network for circulant symmetric arrays allows calculation of element values using closed-form expressions, but the resulting circuit configuration requires multilayer technology for implementation. In this paper, a new structure for the decoupling of circulant symmetric arrays of more than four elements is presented. Element values are no longer obtained in closed form, but the resulting circuit is much simpler and can be implemented on a single layer.
引用
收藏
页码:232 / 239
页数:8
相关论文
共 50 条
  • [41] Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling
    Rizzo, Daniel J.
    Dai, Qingqing
    Bronner, Christopher
    Veber, Gregory
    Smith, Brian J.
    Matsumoto, Michio
    Thomas, Simil
    Nguyen, Giang D.
    Forrester, Patrick R.
    Zhao, William
    Jorgensen, Jakob H.
    Dichtel, William R.
    Fischer, Felix R.
    Li, Hong
    Bredas, Jean-Luc
    Crommie, Michael F.
    NANO LETTERS, 2020, 20 (02) : 963 - 970
  • [42] A new Jacobian matrix for optimal learning of single-layer neural networks
    Peng, Jian-Xun
    Li, Kang
    Irwin, George W.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (01): : 119 - 129
  • [43] Supervised Learning of Single-Layer Spiking Neural Networks for Image Classification
    Ma, Qiang
    Lin, Xianghong
    Wang, Xiangwen
    2018 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2018), 2018, 435
  • [44] Biologically plausible single-layer networks for nonnegative independent component analysis
    Lipshutz, David
    Pehlevan, Cengiz
    Chklovskii, Dmitri B.
    BIOLOGICAL CYBERNETICS, 2022, 116 (5-6) : 557 - 568
  • [45] Face identification with second-order pooling in single-layer networks
    Shen, Fumin
    Yang, Yang
    Zhou, Xiang
    Liu, Xianglong
    Shao, Jie
    NEUROCOMPUTING, 2016, 187 : 11 - 18
  • [46] An Incremental Optimal Weight Learning Machine of Single-Layer Neural Networks
    Ke, Hai-Feng
    Lu, Cheng-Bo
    Li, Xiao-Bo
    Zhang, Gao-Yan
    Mei, Ying
    Shen, Xue-Wen
    SCIENTIFIC PROGRAMMING, 2018, 2018
  • [47] The impact of the marginal utility behavior on single-layer networks with limited contact
    Ju, Xiangyu
    Liu, Siyuan
    Zhu, Xuzhen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (11):
  • [48] Single-layer feedforward neural networks with dynamic width for domain adaptation
    Yang, Le
    Yang, Zelin
    Li, Fan
    Chen, C. L. Philip
    SCIENCE CHINA-INFORMATION SCIENCES, 2025, 68 (08)
  • [49] Fast probabilistic self-structuring of generalized single-layer networks
    Morris, RD
    Garvin, ADM
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (04): : 881 - 888
  • [50] Biologically plausible single-layer networks for nonnegative independent component analysis
    David Lipshutz
    Cengiz Pehlevan
    Dmitri B. Chklovskii
    Biological Cybernetics, 2022, 116 : 557 - 568