Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

被引:9
|
作者
Engel, Edgar A. [1 ]
Monserrat, Bartomeu [1 ,2 ]
Needs, Richard J. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, TCM Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 145卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
SUM-FREQUENCY GENERATION; MOLECULAR-DYNAMICS; STACKING DISORDER; BULK CONTRIBUTION; CRYSTAL-SURFACES; PHASE-TRANSITION; WATER; INTERFACE; SPECTROSCOPY; HYDROGEN;
D O I
10.1063/1.4959283
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from -1.2 eV for the cubic ice basal surface up to -1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice
    Engel, Edgar A.
    Monserrat, Bartomeu
    Needs, Richard J.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (24):
  • [2] SCHEINER HALO - CUBIC ICE OR POLYCRYSTALLINE HEXAGONAL ICE
    WEINHEIMER, AJ
    KNIGHT, CA
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1987, 44 (21) : 3304 - 3308
  • [3] First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys
    Freitas, F. L.
    Marques, M.
    Teles, L. K.
    AIP ADVANCES, 2016, 6 (08):
  • [4] The role of nuclear quantum effects in the relative stability of hexagonal and cubic ice
    Buxton, Samuel J.
    Quigley, David
    Habershon, Scott
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (14):
  • [5] BAND STRUCTURE OF CUBIC AND HEXAGONAL ARGON
    RAMIREZ, R
    FALICOV, LM
    PHYSICAL REVIEW B, 1970, 1 (08): : 3464 - &
  • [6] Band gaps of liquid water and hexagonal ice through advanced electronic-structure calculations
    Bischoff, Thomas
    Reshetnyak, Igor
    Pasquarello, Alfredo
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [7] DIFFERENCE IN ENERGY BETWEEN CUBIC AND HEXAGONAL ICE
    HANDA, YP
    KLUG, DD
    WHALLEY, E
    JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (12): : 7009 - 7010
  • [8] THEORY OF ANELASTIC RELAXATION OF CUBIC AND HEXAGONAL ICE
    GOSAR, P
    PHILOSOPHICAL MAGAZINE, 1974, 29 (02): : 221 - 240
  • [9] Structure and quasiparticle energies of cubic, wurtzite and hexagonal BN
    Cappellini, G
    Fiorentini, V
    Tenelsen, K
    Bechstedt, F
    GALLIUM NITRIDE AND RELATED MATERIALS, 1996, 395 : 429 - 434
  • [10] Observation and Identification of a New OH Stretch Vibrational Band at the Surface of Ice
    Smit, Wilbert J.
    Tang, Fujie
    Nagata, Yuki
    Sanchez, M. Alejandra
    Hasegawa, Taisuke
    Backus, Ellen H. G.
    Bonn, Mischa
    Bakker, Huib J.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (15): : 3656 - 3660