Tokamak plasma response to droplet spraying from melted plasma-facing components

被引:35
|
作者
Tokar, M. Z. [1 ]
Coenen, J. W. [1 ]
Philipps, V. [1 ]
Ueda, Y. [2 ]
机构
[1] Forschungszentrum Julich, Assoc FZJ Euratom, Inst Energy & Climate Res Plasma Phys, D-52425 Julich, Germany
[2] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan
关键词
EDGE; HEAT;
D O I
10.1088/0029-5515/52/1/013013
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High-Z materials such as tungsten are currently the potentially best candidates for plasma-facing components (PFCs) in future fusion devices. However, the threat of melting under uncontrolled conditions and the associated material redistribution and loss can place strict limits on the lifetime of PFCs and plasma operation conditions. In particular, material losses in the form of fine sprayed droplets can provide a very intensive source of impurities in the plasma core. In this paper, the plasma response to radiation losses from impurity particles produced by droplet evaporation is modelled for the conditions found in the tokamak TEXTOR. The interplay between tungsten spraying and plasma behaviour, resulting in the reduction of power transferred to the limiter and diminution of droplet production, is taken into account. Calculations predict, in agreement with experimental observations, that this evolution results in a new steady state with significantly reduced central temperature and peaked impurity radiation profile. The efficiency of melt conversion into droplets, estimated by comparing experimental and computed plasma temperatures, is in reasonable agreement with the predictions from models for droplet generation.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Development of doped graphites for plasma-facing components
    Paz, P
    García-Rosales, C
    Echeberria, J
    Balden, M
    Roth, J
    Behrisch, R
    FUSION ENGINEERING AND DESIGN, 2001, 56-57 : 325 - 330
  • [42] Beryllium plasma-facing components: JET experience
    Deksnis, EB
    Peacock, AT
    Altmann, H
    Ibbot, C
    Falter, HD
    FUSION ENGINEERING AND DESIGN, 1997, 37 (04) : 515 - 530
  • [43] Remobilization of tungsten dust from castellated plasma-facing components
    De Angeli, M.
    Tolias, P.
    Ratynskaia, S.
    Ripamonti, D.
    Riva, G.
    Bardin, S.
    Morgan, T.
    De Temmerman, G.
    NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 536 - 540
  • [44] Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment
    Bell, M. G.
    Kugel, H. W.
    Kaita, R.
    Zakharov, L. E.
    Schneider, H.
    LeBlanc, B. P.
    Mansfield, D.
    Bell, R. E.
    Maingi, R.
    Ding, S.
    Kaye, S. M.
    Paul, S. F.
    Gerhardt, S. P.
    Canik, J. M.
    Hosea, J. C.
    Taylor, G.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
  • [45] Hydrogen isotope retention analysis for tokamak plasma-facing materials
    Burtseva, TA
    HYDROGEN AND HELIUM RECYCLING AT PLASMA FACING MATERIALS, 2002, 54 : 47 - 56
  • [46] Hydrogen isotope retention in beryllium for tokamak plasma-facing applications
    Lockheed Martin Idaho Technol. Co., Idaho Natl. Eng. and Environ. Lab., P.O. Box 1625, Idaho Falls, ID 83415-3860, United States
    不详
    不详
    不详
    不详
    不详
    J Nucl Mater, 1 (1-26):
  • [47] In situ observation of tungsten plasma-facing components after the first phase of operation of the WEST tokamak
    Diez, M.
    Corre, Y.
    Delmas, E.
    Fedorczak, N.
    Firdaouss, M.
    Grosjean, A.
    Gunn, J. P.
    Loarer, T.
    Missirlian, M.
    Richou, M.
    Tsitrone, E.
    NUCLEAR FUSION, 2021, 61 (10)
  • [48] Properties of hydrogen isotopes in the tokamak plasma-facing material beryllium
    Krimmel, H
    Fahnle, M
    JOURNAL OF NUCLEAR MATERIALS, 1996, 231 (1-2) : 159 - 161
  • [49] Lifetime evaluation of plasma-facing materials during a tokamak disruption
    Hassanein, A
    Konkashbaev, I
    JOURNAL OF NUCLEAR MATERIALS, 1996, 233 (Pt A) : 713 - 717
  • [50] Testing of Tungsten Plasma-Facing Components of a Divertor in PLM Plasma Device
    Budaev, V. P.
    Fedorovich, S. D.
    Dedov, A. V.
    Kavyrshin, D. I.
    Karpov, A. V.
    Lukashevsky, M. V.
    Zakharenkov, A. V.
    Gubkin, M. V.
    Tran, Q. V.
    Rogozin, K. A.
    Konkov, A. A.
    Gubanova, A. I.
    PHYSICS OF ATOMIC NUCLEI, 2024, 87 (SUPPL1) : S91 - S98