Reconfigurable Intelligent Surface (RIS)-Aided Vehicular Networks Their Protocols, Resource Allocation, and Performance

被引:46
|
作者
Chen, Yuanbin [1 ]
Wang, Ying [2 ]
Zhang, Jiayi [3 ]
Zhang, Ping [4 ]
Hanzo, Lajos [5 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[3] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[4] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switch Technol, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[5] Univ Southampton, Dept Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
来源
IEEE VEHICULAR TECHNOLOGY MAGAZINE | 2022年 / 17卷 / 02期
基金
国家重点研发计划; 英国工程与自然科学研究理事会; 中国国家自然科学基金; 北京市自然科学基金; 欧洲研究理事会;
关键词
SYSTEMS;
D O I
10.1109/MVT.2022.3158046
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reconfigurable intelligent surfaces (RISs) assist in paving the way for the evolution of conventional vehicular networks to autonomous driving. Having said that, the 3rd Generation Partnership Project (3GPP) faces numerous open challenges concerning the RIS-aided vehicle-to-everything (V2X) solutions of the near future. To tackle these challenges and to stimulate future research, this article focuses on the prospective transmission design of RIS-aided V2X communications. In particular, two V2X sidelink modes are enhanced by exploiting RISs and their variants, followed by a customized transmission frame structure that partitions the transmission efforts into different phases. Next, effective channel-tracking and resource allocation techniques are developed for attaining a high beamforming gain at low overhead and complexity. Finally, promising research topics are highlighted, and future 3GPP standardization items are proposed for RIS-aided V2X systems. © 2005-2012 IEEE.
引用
收藏
页码:26 / 36
页数:11
相关论文
共 50 条
  • [21] Resource Allocation for Intelligent Reflecting Surface Aided Cooperative Communications
    Gao, Yulan
    Yong, Chao
    Xiong, Zehui
    Niyato, Dusit
    Xiao, Yue
    Zhao, Jun
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [22] Optimal Resource Allocation in Aerial Reconfigurable Intelligent Surface-Aided Communications for Beyond 5G
    Nguyen, Minh-Hien T.
    Garcia-Palacios, Emiliano
    2021 IEEE INTERNATIONAL SYMPOSIUM ON DYNAMIC SPECTRUM ACCESS NETWORKS (DYSPAN), 2021, : 237 - 241
  • [23] Secrecy Capacity Analysis of Reconfigurable Intelligent Surface Based Vehicular Networks
    Murugesan, Ashokraj
    Govindasamay, Ananthi
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2022, 19 (03) : 336 - 341
  • [24] Deep Reinforcement Learning for Communication and Computing Resource Allocation in RIS Aided MEC Networks
    Xi, Jianpeng
    Ai, Bo
    Chen, Liangyu
    Wu, Lina
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3184 - 3189
  • [25] Optimizing Beam Selection and Resource Allocation in UAV-Aided Vehicular Networks
    Mignardi, Silvia
    Ferretti, Danila
    Marini, Riccardo
    Conserva, Francesca
    Bartoletti, Stefania
    Verdone, Roberto
    Buratti, Chiara
    2022 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT (EUCNC/6G SUMMIT), 2022, : 184 - 189
  • [26] Learning-Based Resource Allocation for Backscatter-Aided Vehicular Networks
    Khan, Wali Ullah
    Nguyen, Tu N.
    Jameel, Furqan
    Jamshed, Muhammad Ali
    Pervaiz, Haris
    Javed, Muhammad Awais
    Jantti, Riku
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19676 - 19690
  • [27] Performance and Optimization of Reconfigurable Intelligent Surface Aided THz Communications
    Du, Hongyang
    Zhang, Jiayi
    Guan, Ke
    Niyato, Dusit
    Jiao, Huiying
    Wang, Zhiqin
    Kuerner, Thomas
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (05) : 3575 - 3593
  • [28] Research on IoV resource allocation algorithm assisted by reconfigurable intelligent surface
    Chen F.
    Zhang R.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (09): : 70 - 78
  • [29] Weighted-Sum-Rate Maximization for an Reconfigurable Intelligent Surface Aided Vehicular Network
    Dampahalage, Dilin Lalindra
    Manosha, K. B. Shashika
    Rajatheva, Nandana
    Latva-Aho, Matti
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 : 687 - 703
  • [30] Channel reconfiguration for intelligent reflecting surface-aided vehicular networks
    Wang, Ruyan
    Wang, Kang
    Cui, Yaping
    He, Peng
    Wu, Dapeng
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2023, 34 (12)