Infinitely Many Solutions for Neumann Problems Associated to Non-Homogeneous Differential Operators through Orlicz-Sobolev Spaces

被引:0
|
作者
Kashiri, A. [1 ]
Afrouzi, G. A. [1 ]
机构
[1] Univ Mazandaran, Babolsar, Iran
关键词
multiple solution; Neumann problem; non-homogeneous differential operator; Orlicz-Sobolev space; variational methods; VARIABLE EXPONENT;
D O I
10.3103/S106836232201006X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to establish the existence of an unbounded sequence of weak solutions for the following non-homogeneous Neumann problem {-div(alpha(x,vertical bar del u(x)vertical bar)del u(x)) + alpha(x, vertical bar u(x)vertical bar)u(x) = lambda f(x, u(x)) for x is an element of Omega, alpha(x, vertical bar del u(x)vertical bar)partial derivative u/partial derivative v(x) = mu g(gamma(u(x))) for x is an element of partial derivative Omega. To deal with the existence of the mentioned solutions, we use the variational methods and critical point theory, in an appropriate Orlicz-Sobolev space.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [41] Existence of Solutions to a Semilinear Elliptic System through Orlicz-Sobolev Spaces
    Philippe Clément
    Ben de Pagter
    Guido Sweers
    François de Thélin
    Mediterranean Journal of Mathematics, 2004, 1 (3) : 241 - 267
  • [42] On topological degree for pseudomonotone operators in fractional Orlicz-Sobolev spaces: study of positive solutions of non-local elliptic problems
    H. El-Houari
    H. Sabiki
    H. Moussa
    Advances in Operator Theory, 2024, 9
  • [43] QUASILINEAR ELLIPTIC PROBLEMS ON NON-REFLEXIVE ORLICZ-SOBOLEV SPACES
    Silva, Edcarlos D.
    Carvalho, Marcos L. M.
    Silva, Kaye
    Goncalves, Jose, V
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (02) : 587 - 612
  • [44] On topological degree for pseudomonotone operators in fractional Orlicz-Sobolev spaces: study of positive solutions of non-local elliptic problems
    El-Houari, H.
    Sabiki, H.
    Moussa, H.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [45] Boundedness of Maximal Operators and Sobolev’s Inequality on Non-Homogeneous Central Musielak–Orlicz–Morrey Spaces
    Takao Ohno
    Tetsu Shimomura
    Mediterranean Journal of Mathematics, 2016, 13 : 3341 - 3357
  • [46] EXISTENCE OF WEAK SOLUTIONS FOR OBSTACLE PROBLEMS WITH VARIABLE GROWTH IN ORLICZ-SOBOLEV SPACES
    Mouad Allalou
    Said Ait Temghart
    Abderahmane Raji
    Journal of Mathematical Sciences, 2025, 289 (2) : 155 - 167
  • [47] An existence result of entropy solutions to elliptic problems in generalized Orlicz-Sobolev spaces
    Bourahma, M.
    Benkirane, A.
    Bennouna, J.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 481 - 504
  • [48] Existence of Solutions to a Semilinear Elliptic System Through Generalized Orlicz-Sobolev Spaces
    Hsini, M.
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 23 (02): : 168 - 193
  • [49] Boundedness of Maximal Operators and Sobolev's Inequality on Non-Homogeneous Central Musielak-Orlicz-Morrey Spaces
    Ohno, Takao
    Shimomura, Tetsu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3341 - 3357
  • [50] Existence of Multi-peak Solutions for a Class of Quasilinear Problems in Orlicz-Sobolev Spaces
    Claudianor O. Alves
    Ailton R. da Silva
    Acta Applicandae Mathematicae, 2017, 151 : 171 - 198