Superconducting Qubits: Current State of Play

被引:777
|
作者
Kjaergaard, Morten [1 ]
Schwartz, Mollie E. [2 ]
Braumuller, Jochen [1 ]
Krantz, Philip [3 ]
Wang, Joel I. -J. [1 ]
Gustavsson, Simon [1 ]
Oliver, William D. [1 ,2 ,4 ,5 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Lincoln Lab, Lexington, MA 02421 USA
[3] Chalmers Univ Technol, Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
quantum computing; superconducting circuits; quantum algorithms; quantum simulation; quantum error correction; NISQ era; QUANTUM ERROR-CORRECTION; COMPUTATION; SUPREMACY; PHOTON; NOISE; INFORMATION; SIMULATION; CIRCUITS; DYNAMICS; CODE;
D O I
10.1146/annurev-conmatphys-031119-050605
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting qubit modality has been used to demonstrate prototype algorithms in the noisy intermediate-scale quantum (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high-fidelity, two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building largerscale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. Although continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in recent years has been impressive, and here we hope to convey the excitement stemming from this progress.
引用
收藏
页码:369 / 395
页数:27
相关论文
共 50 条
  • [21] Teleportation with superconducting qubits
    Soheila Salimian
    Mohammad Kazem Tavassoly
    Nayere Sehati
    [J]. The European Physical Journal D, 2020, 74
  • [22] SQUEEZING OF SUPERCONDUCTING QUBITS
    Shiokawa, K.
    Nori, F.
    [J]. CONTROLLABLE QUANTUM STATES: MESOSCOPIC SUPERCONDUCTIVITY AND SPRINTRONICS, 2008, : 41 - 46
  • [23] Superconducting phase qubits
    John M. Martinis
    [J]. Quantum Information Processing, 2009, 8 : 81 - 103
  • [24] Teleportation with superconducting qubits
    Salimian, Soheila
    Tavassoly, Mohammad Kazem
    Sehati, Nayere
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (07):
  • [25] Superconducting qubits in Russia
    Besedin, I. S.
    Fedorov, G. P.
    Dmitriev, A. Yu
    Ryazanov, V. V.
    [J]. QUANTUM ELECTRONICS, 2018, 48 (10) : 880 - 885
  • [26] Flying superconducting qubits
    Fujii, Toshiyuki
    Shibata, Tomoya
    Nishida, Munehiro
    Hatakenaka, Noriyuki
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) : 97 - 100
  • [27] Bures and Sjöqvist metrics over thermal state manifolds for spin qubits and superconducting flux qubits
    Carlo Cafaro
    Paul M. Alsing
    [J]. The European Physical Journal Plus, 138
  • [28] Perfect state transfer on hypercubes and its implementation using superconducting qubits
    Singh, Siddhant
    Adhikari, Bibhas
    Dutta, Supriyo
    Zueco, David
    [J]. PHYSICAL REVIEW A, 2020, 102 (06)
  • [29] Bell-state generation on remote superconducting qubits with dark photons
    Ming Hua
    Ming-Jie Tao
    Ahmed Alsaedi
    Tasawar Hayat
    Hai-Rui Wei
    Fu-Guo Deng
    [J]. Quantum Information Processing, 2018, 17
  • [30] Steady-state entanglement of two superconducting qubits engineered by dissipation
    Reiter, Florentin
    Tornberg, L.
    Johansson, Goran
    Sorensen, Anders S.
    [J]. PHYSICAL REVIEW A, 2013, 88 (03):