Superconducting Qubits: Current State of Play

被引:777
|
作者
Kjaergaard, Morten [1 ]
Schwartz, Mollie E. [2 ]
Braumuller, Jochen [1 ]
Krantz, Philip [3 ]
Wang, Joel I. -J. [1 ]
Gustavsson, Simon [1 ]
Oliver, William D. [1 ,2 ,4 ,5 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Lincoln Lab, Lexington, MA 02421 USA
[3] Chalmers Univ Technol, Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
quantum computing; superconducting circuits; quantum algorithms; quantum simulation; quantum error correction; NISQ era; QUANTUM ERROR-CORRECTION; COMPUTATION; SUPREMACY; PHOTON; NOISE; INFORMATION; SIMULATION; CIRCUITS; DYNAMICS; CODE;
D O I
10.1146/annurev-conmatphys-031119-050605
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting qubit modality has been used to demonstrate prototype algorithms in the noisy intermediate-scale quantum (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high-fidelity, two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building largerscale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. Although continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in recent years has been impressive, and here we hope to convey the excitement stemming from this progress.
引用
收藏
页码:369 / 395
页数:27
相关论文
共 50 条
  • [1] Teleportation of the entangled state of two superconducting qubits
    Salimian, S.
    Tavassoly, M. K.
    Sehati, N.
    [J]. EPL, 2022, 138 (05)
  • [2] Fast Accurate State Measurement with Superconducting Qubits
    Jeffrey, Evan
    Sank, Daniel
    Mutus, J. Y.
    White, T. C.
    Kelly, J.
    Barends, R.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Megrant, A.
    O'Malley, P. J. J.
    Neill, C.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Cleland, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (19)
  • [3] Quantum State Transfer with Tunable Couplings for Superconducting Qubits
    Long-Bao Yu
    Jun Liu
    Ping Dong
    Zhuo-Liang Cao
    [J]. International Journal of Theoretical Physics, 2013, 52 : 404 - 410
  • [4] Quantum State Transfer with Tunable Couplings for Superconducting Qubits
    Yu, Long-Bao
    Liu, Jun
    Dong, Ping
    Cao, Zhuo-Liang
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (02) : 404 - 410
  • [5] Superconducting qubits
    Devoret, MH
    Martinis, JM
    [J]. QUANTUM ENTANGLEMENT AND INFORMATION PROCESSING, 2004, 79 : 443 - 485
  • [6] THE CURRENT STATE OF PLAY
    SMITH, PK
    [J]. BEHAVIORAL AND BRAIN SCIENCES, 1982, 5 (01) : 172 - 178
  • [7] Current state of play
    Haas, Francois
    [J]. INTEGRATING EUROPE'S FINANCIAL MARKETS, 2007, : 41 - 63
  • [8] On quantum & classical computing with arrays of superconducting persistent current qubits
    Jonker, P
    Han, J
    [J]. 5TH INTERNATIONAL WORKSHOP ON COMPUTER ARCHITECTURES FOR MACHINE PERCEPTION, PROCEEDINGS, 2000, : 69 - 78
  • [9] Dynamics of measurement-induced state transitions in superconducting qubits
    Hirasaki, Yuta
    Daimon, Shunsuke
    Kanazawa, Naoki
    Itoko, Toshinari
    Tokunari, Masao
    Saitoh, Eiji
    [J]. JOURNAL OF APPLIED PHYSICS, 2024, 136 (12)
  • [10] Bures and Sjoqvist metrics over thermal state manifolds for spin qubits and superconducting flux qubits
    Cafaro, Carlo
    Alsing, Paul M. M.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (07):