Kernel density estimation for hierarchical data

被引:2
|
作者
Wilson, Christopher M. [1 ]
Gerard, Patrick [2 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL 33612 USA
[2] Clemson Univ, Clemson, SC USA
关键词
Kernel density estimation; correlated data; resampling; bandwidth selection; multistage sampling; random effects;
D O I
10.1080/03610926.2018.1563179
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multistage sampling is a common sampling technique employed in many studies. In this setting, observations are identically distributed but not independent, thus many traditional kernel smoothing techniques, which assume that the data are independent and identically distributed (i.i.d.), may not produce reasonable density estimates. In this paper, we sample repeatedly with replacement from each cluster, create multiple i.i.d. samples containing one observation from each cluster, and then create a kernel density estimate from each i.i.d. sample. These estimates will then be combined to form an estimate of the marginal probability density function of the population.
引用
收藏
页码:1495 / 1512
页数:18
相关论文
共 50 条
  • [31] Kernel Density Estimation with Missing Data: Misspecifying the Missing Data Mechanism
    Dubnicka, Suzanne R.
    [J]. NONPARAMETRIC STATISTICS AND MIXTURE MODELS: A FESTSCHRIFT IN HONOR OF THOMAS P HETTMANSPERGER, 2011, : 114 - 135
  • [32] Kernel estimation of conditional density with truncated, censored and dependent data
    Liang, Han-Ying
    Liu, Ai-Ai
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 120 : 40 - 58
  • [33] MULTIDIMENSIONAL DATA CLUSTERING BASED ON FAST KERNEL DENSITY ESTIMATION
    Yin, Xun-Fu
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 311 - 315
  • [34] Kernel density estimation under weak dependence with sampled data
    Wu, BL
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 61 (01) : 141 - 154
  • [35] Conditional kernel density estimation for some incomplete data models
    Yan, Ting
    Qu, Liangqiang
    Li, Zhaohai
    Yuan, Ao
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 1299 - 1329
  • [36] Development of a kernel density estimation with hybrid estimated bounded data
    Kang, Young-Jin
    Noh, Yoojeong
    Lim, O-Kaung
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2018, 32 (12) : 5807 - 5815
  • [37] Fast Rotation Kernel Density Estimation over Data Streams
    Lei, Runze
    Wang, Pinghui
    Li, Rundong
    Jia, Peng
    Zhao, Junzhou
    Guan, Xiaohong
    Deng, Chao
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 892 - 902
  • [38] Quick multivariate kernel density estimation for massive data sets
    Cheng, K. F.
    Chu, C. K.
    Lin, Dennis K. J.
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2006, 22 (5-6) : 533 - 546
  • [39] A Greedy Algorithm for Unimodal Kernel Density Estimation by Data Sharpening
    Wolters, Mark A.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 47 (06): : 1 - 26
  • [40] Development of a kernel density estimation with hybrid estimated bounded data
    Young-Jin Kang
    Yoojeong Noh
    O-Kaung Lim
    [J]. Journal of Mechanical Science and Technology, 2018, 32 : 5807 - 5815