Radar Odometry Combining Probabilistic Estimation and Unsupervised Feature Learning

被引:0
|
作者
Burnett, Keenan [1 ]
Yoon, David J. [1 ]
Schoellig, Angela P. [1 ]
Barfoot, Timothy D. [1 ]
机构
[1] Univ Toronto, Inst Aerosp Studies, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LOCALIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a radar odometry method that combines probabilistic trajectory estimation and deep learned features without needing groundtruth pose information. The feature network is trained unsupervised, using only the on-board radar data. With its theoretical foundation based on a data likelihood objective, our method leverages a deep network for processing rich radar data, and a non-differentiable classic estimator for probabilistic inference. We provide extensive experimental results on both the publicly available Oxford Radar RobotCar Dataset and an additional 100 km of driving collected in an urban setting. Our sliding-window implementation of radar odometry outperforms most hand-crafted methods and approaches the current state of the art without requiring a groundtruth trajectory for training. We also demonstrate the effectiveness of radar odometry under adverse weather conditions. Code for this project can be found at: https://github.com/utiasASRL/hero_radar_odometry
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction
    Zhan, Huangying
    Garg, Ravi
    Weerasekera, Chamara Saroj
    Li, Kejie
    Agarwal, Harsh
    Reid, Ian
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 340 - 349
  • [2] DEEP UNSUPERVISED LEARNING FOR SIMULTANEOUS VISUAL ODOMETRY AND DEPTH ESTIMATION
    Lu, Yawen
    Lu, Guoyu
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2571 - 2575
  • [3] Under the Radar: Learning to Predict Robust Keypoints for Odometry Estimation and Metric Localisation in Radar
    Barnes, Dan
    Posner, Ingmar
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9484 - 9490
  • [4] Unsupervised feature selection by combining subspace learning with feature self-representation
    Li, Yangding
    Lei, Cong
    Fang, Yue
    Hu, Rongyao
    Li, Yonggang
    Zhang, Shichao
    [J]. PATTERN RECOGNITION LETTERS, 2018, 109 : 35 - 43
  • [5] Unsupervised Learning of Depth Estimation and Visual Odometry for Sparse Light Field Cameras
    Digumarti, S. Tejaswi
    Daniel, Joseph
    Ravendran, Ahalya
    Griffiths, Ryan
    Dansereau, Donald G.
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 278 - 285
  • [6] UFODepth: Unsupervised learning with flow-based odometry optimization for metric depth estimation
    Licaret, Vlad
    Robu, Victor
    Marcu, Alina
    Costea, Dragos
    Slusanschi, Emil
    Sukthankar, Rahul
    Leordeanu, Marius
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 6526 - 6532
  • [7] An Enhanced Unsupervised Feature Learning Framework For Radar Sounder Signal Segmentation
    Ghosh, Raktim
    Bovolo, Francesca
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6920 - 6923
  • [8] Deep Unsupervised Learning Based Visual Odometry with Multi-scale Matching and Latent Feature Constraint
    Liang, Zhenzhen
    Wang, Qixin
    Yu, Yuanlong
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 2239 - 2246
  • [9] Human Identification via Unsupervised Feature Learning from UWB Radar Data
    Yin, Jie
    Tran, Son N.
    Zhang, Qing
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I, 2018, 10937 : 322 - 334
  • [10] Unsupervised monocular visual odometry via combining instance and RGB information
    Yue, Min
    Fu, Guangyuan
    Wu, Ming
    Gu, Hongyang
    Yao, Erliang
    [J]. APPLIED OPTICS, 2022, 61 (13) : 3793 - 3803