Under the Radar: Learning to Predict Robust Keypoints for Odometry Estimation and Metric Localisation in Radar

被引:0
|
作者
Barnes, Dan [1 ]
Posner, Ingmar [1 ]
机构
[1] Univ Oxford, Appl AI Lab, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/icra40945.2020.9196835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a self-supervised framework for learning to detect robust keypoints for odometry estimation and metric localisation in radar. By embedding a differentiable point-based motion estimator inside our architecture, we learn keypoint locations, scores and descriptors from localisation error alone. This approach avoids imposing any assumption on what makes a robust keypoint and crucially allows them to be optimised for our application. Furthermore the architecture is sensor agnostic and can be applied to most modalities. We run experiments on 280km of real world driving from the Oxford Radar RobotCar Dataset and improve on the state-of-the-art in point-based radar odometry, reducing errors by up to 45% whilst running an order of magnitude faster, simultaneously solving metric loop closures. Combining these outputs, we provide a framework capable of full mapping and localisation with radar in urban environments.
引用
收藏
页码:9484 / 9490
页数:7
相关论文
共 50 条
  • [1] Kidnapped Radar: Topological Radar Localisation using Rotationally-Invariant Metric Learning
    Saftescu, Stefan
    Gadd, Matthew
    De Martini, Daniele
    Barnes, Dan
    Newman, Paul
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 4358 - 4364
  • [2] Radar Odometry Combining Probabilistic Estimation and Unsupervised Feature Learning
    Burnett, Keenan
    Yoon, David J.
    Schoellig, Angela P.
    Barfoot, Timothy D.
    [J]. ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,
  • [3] Deep metric learning for robust radar signal recognition
    Chen, Kuiyu
    Zhang, Jingyi
    Chen, Si
    Zhang, Shuning
    [J]. DIGITAL SIGNAL PROCESSING, 2023, 137
  • [4] ORORA: Outlier-Robust Radar Odometry
    Lim, Hyungtae
    Han, Kawon
    Shin, Gunhee
    Kim, Giseop
    Hong, Songcheol
    Myung, Hyun
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2046 - 2053
  • [5] Radar Visual Inertial Odometry and Radar Thermal Inertial Odometry: Robust Navigation even in Challenging Visual Conditions
    Doer, Christopher
    Trommer, Gert F.
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 331 - 338
  • [6] Radar style transfer for metric robot localisation on lidar maps
    Yin, Huan
    Wang, Yue
    Wu, Jun
    Xiong, Rong
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (01) : 139 - 148
  • [7] DRIO: Robust Radar-Inertial Odometry in Dynamic Environments
    Chen, Hongyu
    Liu, Yimin
    Cheng, Yuwei
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (09) : 5918 - 5925
  • [8] R3O: Robust Radon Radar Odometry
    Lubanco, Daniel Louback S.
    Hashem, Ahmed
    Pichler-Scheder, Markus
    Stelzer, Andreas
    Feger, Reinhard
    Schlechter, Thomas
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 231 - 246
  • [9] Robust estimation of radar pulse modulation
    Lunden, Jarmo
    Koivunen, Visa
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2006, : 271 - +
  • [10] Ship Location Estimation from Radar and Optic Images using Metric Learning
    Kilic, Muhammed Maruf
    Akgul, Yusuf Sinan
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,