On order-preserving representations

被引:1
|
作者
Ben Simon, G. [1 ]
Burger, M. [2 ]
Hartnick, T. [3 ]
Iozzi, A. [2 ]
Wienhard, A. [4 ,5 ]
机构
[1] ORT Braude Coll, Dept Math, POB 78, IL-2161002 Karmiel, Israel
[2] ETH, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[3] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[4] Heidelberg Univ, Math Inst, D-69120 Heidelberg, Germany
[5] HITS gGmbH, Heidelberg Inst Theoret Studies, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
基金
美国国家科学基金会; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
WINDING NUMBERS; INVARIANT; SURFACES;
D O I
10.1112/jlms/jdw048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce order-preserving representations of fundamental groups of surfaces into Lie groups with bi-invariant orders. By relating order-preserving representations to weakly maximal representations, previously introduced by the authors, we show that order-preserving representations into Lie groups of Hermitian type are faithful with discrete image, and that the set of order-preserving representations is closed in the representation variety. For Lie groups of Hermitian type whose associated symmetric space is of tube type, we give a geometric characterization of these representations in terms of the causal structure on the Shilov boundary.
引用
收藏
页码:525 / 544
页数:20
相关论文
共 50 条
  • [21] Endomorphisms of the semigroup of order-preserving mappings
    Fernandes, V. H.
    Jesus, M. M.
    Maltcev, V.
    Mitchell, J. D.
    SEMIGROUP FORUM, 2010, 81 (02) : 277 - 285
  • [22] Order-preserving pattern matching with scaling
    Kim, Youngho
    Kang, Munseong
    Na, Joong Chae
    Sim, Jeong Seop
    INFORMATION PROCESSING LETTERS, 2023, 180
  • [23] On certain order-preserving transformation semigroups
    Zhang, Jia
    Luo, Yanfeng
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 2980 - 2995
  • [24] Order-Preserving Pattern Matching with Partition
    Na, Joong Chae
    Kim, Youngjoon
    Kang, Seokchul
    Sim, Jeong Seop
    MATHEMATICS, 2024, 12 (21)
  • [25] POSITIVE EIGENVECTORS OF ORDER-PRESERVING MAPS
    SCHNEIDE.H
    TURNER, REL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 37 (02) : 506 - &
  • [26] ON ORDER-PRESERVING EXTENSIONS TO REGRESSIVE ISOLS
    SANSONE, FJ
    MICHIGAN MATHEMATICAL JOURNAL, 1966, 13 (03) : 353 - &
  • [27] ORDER-PRESERVING MAPS AND INTEGRATION PROCESSES
    MCSHANE, EJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (05) : 371 - 371
  • [28] Modular Order-Preserving Encryption, Revisited
    Mavroforakis, Charalampos
    Chenette, Nathan
    O'Neill, Adam
    Kollios, George
    Canetti, Ran
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 763 - 777
  • [29] CONVERGENCE FOR STRONGLY ORDER-PRESERVING SEMIFLOWS
    SMITH, HL
    THIEME, HR
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (04) : 1081 - 1101
  • [30] Fixed points of order-preserving transformations
    Laradji, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (04)