Time Series Forecasting with Interval Type-2 Intuitionistic Fuzzy Logic Systems

被引:0
|
作者
Eyoh, Imo [1 ,2 ]
John, Robert [1 ,2 ]
De Maere, Geert [2 ]
机构
[1] Univ Nottingham, Sch Comp Sci, Lab Uncertainty Data & Decis Making LUCID, Nottingham, England
[2] Univ Nottingham, Sch Comp Sci, Automated Scheduling Optimisat & Planning ASAP, Nottingham, England
关键词
EXTREME LEARNING-MACHINE; NEURAL-NETWORK; REGRESSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional fuzzy time series approaches make use of type-1 or type-2 fuzzy models. Type-1 models with one index (membership grade) cannot fully handle the level of uncertainty inherent in many real world applications. The type-2 models with upper and lower membership functions do handle uncertainties in many applications better than its type-1 counterparts. This study proposes the use of interval type-2 intuitionistic fuzzy logic system of Takagi-Sugeno-Kang (IT2IFLS-TSK) fuzzy inference that utilises more parameters than type-2 fuzzy models in time series forecasting. The IT2IFLS utilises more indexes namely upper and lower non-membership functions. These additional parameters of IT2IFLS serve to refine the fuzzy relationships obtained from type-2 fuzzy models and ultimately improve the forecasting performance. Evaluation is made on the proposed system using three real world benchmark time series problems namely: Santa Fe, tree ring and Canadian lynx datasets. The empirical analyses show improvements of prediction of IT2IFLS over other approaches on these datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Local meteorological forecasting by Type-2 Fuzzy Systems time series prediction
    Mencattini, A
    Salmeri, M
    Bertazzoni, S
    Lojacono, R
    Pasero, E
    Moniaci, W
    [J]. PROCEEDINGS OF THE 2005 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2005, : 75 - 80
  • [22] Interval type-2 fuzzy logic systems made simple
    Mendel, Jerry M.
    John, Robert I.
    Liu, Feilong
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2006, 14 (06) : 808 - 821
  • [23] Interval type-2 fuzzy logic systems: Theory and design
    Liang, QL
    Mendel, JM
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (05) : 535 - 550
  • [24] On the importance of interval sets in type-2 fuzzy logic systems
    Mendel, JM
    [J]. JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1647 - 1652
  • [25] Computing derivatives in interval type-2 fuzzy logic systems
    Mendel, JM
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (01) : 84 - 98
  • [26] Prediction Interval Construction Using Interval Type-2 Fuzzy Logic Systems
    Khosravi, Abbas
    Nahavandi, Saeid
    Creighton, Doug
    Naghavizadeh, Reihaneh
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [27] Derivative-Based Learning of Interval Type-2 Intuitionistic Fuzzy Logic Systems for Noisy Regression Problems
    Imo Jeremiah Eyoh
    Uduak Augustine Umoh
    Udoinyang Godwin Inyang
    Jeremiah Effiong Eyoh
    [J]. International Journal of Fuzzy Systems, 2020, 22 : 1007 - 1019
  • [28] Derivative-Based Learning of Interval Type-2 Intuitionistic Fuzzy Logic Systems for Noisy Regression Problems
    Eyoh, Imo Jeremiah
    Umoh, Uduak Augustine
    Inyang, Udoinyang Godwin
    Eyoh, Jeremiah Effiong
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (03) : 1007 - 1019
  • [29] Building fuzzy inference systems with the interval type-2 fuzzy logic toolbox
    Castro, J. R.
    Castillo, O.
    Melin, P.
    Martinez, L. G.
    Escobar, S.
    Camacho, I.
    [J]. ANALYSIS AND DESIGN OF INTELLIGENT SYSTEMS USING SOFT COMPUTING TECHNIQUES, 2007, 41 : 53 - +
  • [30] Interval Type-2 Fuzzy Logic Toolbox
    Castro, Juan R.
    Castillo, Oscar
    Martinez, Luis G.
    [J]. ENGINEERING LETTERS, 2007, 15 (01)