Time Series Forecasting with Interval Type-2 Intuitionistic Fuzzy Logic Systems

被引:0
|
作者
Eyoh, Imo [1 ,2 ]
John, Robert [1 ,2 ]
De Maere, Geert [2 ]
机构
[1] Univ Nottingham, Sch Comp Sci, Lab Uncertainty Data & Decis Making LUCID, Nottingham, England
[2] Univ Nottingham, Sch Comp Sci, Automated Scheduling Optimisat & Planning ASAP, Nottingham, England
关键词
EXTREME LEARNING-MACHINE; NEURAL-NETWORK; REGRESSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional fuzzy time series approaches make use of type-1 or type-2 fuzzy models. Type-1 models with one index (membership grade) cannot fully handle the level of uncertainty inherent in many real world applications. The type-2 models with upper and lower membership functions do handle uncertainties in many applications better than its type-1 counterparts. This study proposes the use of interval type-2 intuitionistic fuzzy logic system of Takagi-Sugeno-Kang (IT2IFLS-TSK) fuzzy inference that utilises more parameters than type-2 fuzzy models in time series forecasting. The IT2IFLS utilises more indexes namely upper and lower non-membership functions. These additional parameters of IT2IFLS serve to refine the fuzzy relationships obtained from type-2 fuzzy models and ultimately improve the forecasting performance. Evaluation is made on the proposed system using three real world benchmark time series problems namely: Santa Fe, tree ring and Canadian lynx datasets. The empirical analyses show improvements of prediction of IT2IFLS over other approaches on these datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Interval Type-2 Intuitionistic Fuzzy Logic Systems - A Comparative Evaluation
    Eyoh, Imo
    John, Robert
    De Maere, Geert
    [J]. INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, IPMU 2018, PT I, 2018, 853 : 687 - 698
  • [2] Applications of type-2 fuzzy logic systems to forecasting of time-series
    Karnik, NN
    Mendel, JM
    [J]. INFORMATION SCIENCES, 1999, 120 (1-4) : 89 - 111
  • [3] Electrical load time series data forecasting using Interval Type-2 Fuzzy Logic system
    Electrical Engineering Department, Petra Christian University, 121-131 Siwalankerto Surabaya, Indonesia
    [J]. Proc. - IEEE Int. Conf. Comput. Sci. Inf. Technol., ICCSIT, 1600, (527-531):
  • [4] Electrical Load Time Series Data Forecasting Using Interval Type-2 Fuzzy Logic System
    Thiang, Yongky Kurniawan
    [J]. PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 5, 2010, : 527 - 531
  • [5] Interval type-2 fuzzy logic systems
    Liang, QL
    Mendel, JM
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 328 - 333
  • [6] Interval Type-2 Fuzzy Logic Systems for Load Forecasting: A Comparative Study
    Khosravi, Abbas
    Nahavandi, Saeid
    Creighton, Doug
    Srinivasan, Dipti
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (03) : 1274 - 1282
  • [7] Interval Type-2 A-Intuitionistic Fuzzy Logic for Regression Problems
    Eyoh, Imo
    John, Robert
    De Maere, Geert
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (04) : 2396 - 2408
  • [8] Load Forecasting Using Interval Type-2 Fuzzy Logic Systems: Optimal Type Reduction
    Khosravi, Abbas
    Nahavandi, Saeid
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (02) : 1055 - 1063
  • [9] An Interval Type-2 Fuzzy Logic System for Stock Index Forecasting Based on Fuzzy Time Series and a Fuzzy Logical Relationship Map
    Jiang, Joe-Air
    Syue, Chih-Hao
    Wang, Chien-Hao
    Wang, Jen-Cheng
    Shieh, Jiann-Shing
    [J]. IEEE ACCESS, 2018, 6 : 69107 - 69119
  • [10] Short Term Load Forecasting Using Interval Type-2 Fuzzy Logic Systems
    Khosravi, Abbas
    Nahavandi, Saeid
    Creighton, Doug
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 502 - 508