Efficient visual tracking using particle filter with incremental likelihood calculation

被引:26
|
作者
Liu, Huaping [1 ]
Sun, Fuchun
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
关键词
Visual tracking; Incremental likelihood calculation; Markov Chain Monte Carlo; SHARED CONTROL; MODEL;
D O I
10.1016/j.ins.2012.01.033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a particle filter that determines the weight of each particle employing the incremental likelihood calculation. Since there is usually a large overlap region between the two particles that are sequentially generated, determining the weight of the particle has only a small time cost. Therefore, the real-time performance of the proposed tracker can be dramatically improved. Extensive experimental results for single-object and multiple-object tracking scenarios are presented to demonstrate the efficiency of the proposed approach. Finally, an interesting color-based active vision system is developed for a free-floating space robot testbed to facilitate teleoperation. (C) 2012 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:141 / 153
页数:13
相关论文
共 50 条
  • [11] An Ant Particle Filter for Visual Tracking
    Wang, Fasheng
    Lin, Baowei
    Li, Xucheng
    2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), 2017, : 417 - 422
  • [12] Oriented Particle Filter for Visual Tracking
    Hao Zhihui
    Wang Bo
    Zheng Zhihui
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 2915 - 2919
  • [13] Visual Tracking Using an Insect Vision Embedded Particle Filter
    Guo, Wei
    Zhao, Qingjie
    Gu, Dongbing
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [14] Correlation Particle Filter for Visual Tracking
    Zhang, Tianzhu
    Liu, Si
    Xu, Changsheng
    Liu, Bin
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2676 - 2687
  • [15] Iterative particle filter for visual tracking
    Fan, Zhenhua
    Ji, Hongbing
    Zhang, Yongquan
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2015, 36 : 140 - 153
  • [16] An improved real visual tracking system using particle filter
    Fiyad, Hatem Mohammed Naguib
    Abdellatif, Ahmed Gamal
    Mahamoud, Adel Zaghloul
    Ahmed, Mostafa Mohamed
    Nasr, Mohamed E.
    Abdelsamie, Fathi Elsayed
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (11): : 164 - 169
  • [17] Likelihood Adaptation of Particle Filter for Target Tracking using Wireless Sensor Networks
    Zhao, Yubin
    Yang, Yuan
    Kyas, Marcel
    2013 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2013, : 3323 - 3328
  • [18] An efficient hybrid framework for visual tracking using Exponential Quantum Particle Filter and Mean Shift optimization
    Prajna Parimita Dash
    Dipti Patra
    Multimedia Tools and Applications, 2020, 79 : 21513 - 21537
  • [19] Maximum likelihood FIR filter for visual object tracking
    Pak, Jung Min
    Ahn, Choon Ki
    Mo, Yung Hak
    Lim, Myo Taeg
    Song, Moon Kyou
    NEUROCOMPUTING, 2016, 216 : 543 - 553
  • [20] An efficient hybrid framework for visual tracking using Exponential Quantum Particle Filter and Mean Shift optimization
    Dash, Prajna Parimita
    Patra, Dipti
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (29-30) : 21513 - 21537