Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners

被引:32
|
作者
Mohan, Midhun [1 ,2 ]
Leite, Rodrigo Vieira [3 ]
Broadbent, Eben North [4 ]
Jaafar, Wan Shafrina Wan Mohd [5 ]
Srinivasan, Shruthi [6 ]
Bajaj, Shaurya [2 ]
Corte, Ana Paula Dalla [7 ]
Amaral, Cibele Hummel do [3 ]
Gopan, Gopika [2 ]
Saad, Siti Nor Maizah [5 ,8 ]
Kamarulzaman, Aisyah Marliza Muhmad [5 ]
Prata, Gabriel Atticciati [4 ]
Llewelyn, Emma [2 ]
Johnson, Daniel J. [9 ]
Doaemo, Willie [10 ,11 ]
Bohlman, Stephanie [9 ]
Zambrano, Angelica Maria Almeyda [12 ]
Cardil, Adrian [13 ,14 ,15 ]
机构
[1] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94709 USA
[2] Morobe Dev Fdn, Lae 00411, Papua N Guinea
[3] Univ Fed Vicosa, Dept Forest Engn, BR-36570900 Vicosa, MG, Brazil
[4] Univ Florida, Sch Forest Resources & Conservat, Spatial Ecol & Conservat Lab, Gainesville, FL 32611 USA
[5] Univ Kebangsaan Malaysia, Inst Climate Change, Earth Observat Ctr, Bangi 43600, Selangor, Malaysia
[6] Texas A&M Forest Serv, Dept Forest Analyt, Dallas, TX 75252 USA
[7] Fed Univ Parana UFPR, Dept Forest Sci, BR-80210170 Curitiba, Parana, Brazil
[8] Univ Teknol MARA Perlis, UiTM Arau, Dept Surveying Sci & Geomat, Arau 02600, Perlis, Malaysia
[9] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[10] Morobe Dev Fdn, Doyle St,Trish Ave Eriku, Lae 00411, Papua N Guinea
[11] Papua New Guinea Univ Technol, Dept Civil Engn, Lae 00411, Papua N Guinea
[12] Univ Florida, Ctr Latin Amer Studies, Gainesville, FL 32611 USA
[13] Joint Res Unit CTFC AGROTECNIO, Solsona, Spain
[14] Univ Lleida, Dept Crop & Forest Sci, Lleida, Spain
[15] Technosylva Inc, La Jolla, CA USA
关键词
single tree detection; CHM; LM; drones; UAV tutorials; forestry data analysis; forest remote sensing; FROM-MOTION PHOTOGRAMMETRY; CROWN DELINEATION; F-SCORE; FOREST; DENSITY; SEGMENTATION; PERFORMANCE; PLANTATION; ALGORITHM; ACCURACY;
D O I
10.1515/geo-2020-0290
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Applications of unmanned aerial vehicles (UAVs) have proliferated in the last decade due to the technological advancements on various fronts such as structure-from- motion (SfM), machine learning, and robotics. An impor- tant preliminary step with regard to forest inventory and management is individual tree detection (ITD), which is required to calculate forest attributes such as stem volume, forest uniformity, and biomass estimation. However, users may find adopting the UAVs and algorithms for their spe- cific projects challenging due to the plethora of information available. Herein, we provide a step-by-step tutorial for performing ITD using (i) low-cost UAV-derived imagery and (ii) UAV-based high-density lidar (light detection and ranging). Functions from open-source R packages were implemented to develop a canopy height model (CHM) and perform ITD utilizing the local maxima (LM) algorithm. ITD accuracy assessment statistics and validation were derived through manual visual interpretation from high-resolution imagery and field-data-based accuracy assessment. As the intended audience are beginners in remote sensing, we have adopted a very simple methodology and chosen study plots that have relatively open canopies to demonstrate our proposed approach; the respective R codes and sample plot data are available as supplementary materials.
引用
收藏
页码:1028 / 1039
页数:12
相关论文
共 50 条
  • [31] Tree Stem Detection and Crown Delineation in a Structurally Diverse Deciduous Forest Combining Leaf-On and Leaf-Off UAV-SfM Data
    Dietenberger, Steffen
    Mueller, Marlin M.
    Bachmann, Felix
    Nestler, Maximilian
    Ziemer, Jonas
    Metz, Friederike
    Heidenreich, Marius G.
    Koebsch, Franziska
    Hese, Soeren
    Dubois, Clemence
    Thiel, Christian
    [J]. REMOTE SENSING, 2023, 15 (18)
  • [32] Arctic coastal erosion: UAV-SfM data collection strategies for planimetric and volumetric measurements
    Clark, Andrew
    Moorman, Brian
    Whalen, Dustin
    Fraser, Paul
    [J]. ARCTIC SCIENCE, 2021, 7 (03) : 605 - 633
  • [33] ASSESSING THE STABILITY OF CANOPY MAPS PRODUCED FROM UAV-LIDAR DATA
    Wallace, Luke
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3879 - 3882
  • [34] Mapping Earth Hummocks in Daisetsuzan National Park in Japan Using UAV-SfM Framework
    Meng, Yu
    Watanabe, Teiji
    Hayakawa, Yuichi S.
    Sawada, Yuki
    Wang, Ting
    [J]. Remote Sensing, 2024, 16 (19)
  • [35] From Drones to Phenotype: Using UAV-LiDAR to Detect Species and Provenance Variation in Tree Productivity and Structure
    Camarretta, Nicolo
    A. Harrison, Peter
    Lucieer, Arko
    M. Potts, Brad
    Davidson, Neil
    Hunt, Mark
    [J]. REMOTE SENSING, 2020, 12 (19) : 1 - 16
  • [36] Estimation of the Plant Height for Energy Crops Using UAV-SfM Method; [UAV-SfM法を用いたエネルギー作物の草丈推定]
    Hasegawa F.
    Yoshikawa S.
    Furuhashi K.
    Kaizu Y.
    Imou K.
    [J]. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2022, 101 (12): : 265 - 269
  • [37] Effect of Leaf Occlusion on Leaf Area Index Inversion of Maize Using UAV-LiDAR Data
    Lei, Lei
    Qiu, Chunxia
    Li, Zhenhai
    Han, Dong
    Han, Liang
    Zhu, Yaohui
    Wu, Jintao
    Xu, Bo
    Feng, Haikuan
    Yang, Hao
    Yang, Guijun
    [J]. REMOTE SENSING, 2019, 11 (09):
  • [38] Assessing the Self-Recovery Ability of Maize after Lodging Using UAV-LiDAR Data
    Hu, Xueqian
    Sun, Lin
    Gu, Xiaohe
    Sun, Qian
    Wei, Zhonghui
    Pan, Yuchun
    Chen, Liping
    [J]. REMOTE SENSING, 2021, 13 (12)
  • [39] Mangrove tree height growth monitoring from multi-temporal UAV-LiDAR
    Yin, Dameng
    Wang, Le
    Lu, Ying
    Shi, Chen
    [J]. REMOTE SENSING OF ENVIRONMENT, 2024, 303
  • [40] Extraction of individual tree parameters by combining terrestrial and UAV LiDAR
    Zhu J.
    Liu Q.
    Cui X.
    Zhang W.
    [J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (14): : 51 - 58