A fractal vector quantizer for image coding

被引:9
|
作者
Kim, CS [1 ]
Kim, RC
Lee, SU
机构
[1] Seoul Natl Univ, Sch Elect Engn, Signal Proc Lab, Seoul 151742, South Korea
[2] Hansung Univ, Sch Informat & Comp Engn, Seoul, South Korea
关键词
D O I
10.1109/83.725366
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the relation between VQ (vector quantization) and fractal image coding techniques, and propose a novel algorithm for still image coding, based on fractal vector quantization (FVQ). In FVQ, the source image is approximated coarsely by fixed basis blocks, and the codebook is self-trained from the coarsely approximated image, rather than from an outside training set or the source image itself. Therefore, FVQ is capable of eliminating the redundancy in the codebook without any side information, in addition to exploiting the self-similarity in real images effectively. The computer simulation results demonstrate that the proposed algorithm provides better peak signal-to-noise ratio (PSNR) performance than most other fractal-based coders.
引用
收藏
页码:1598 / 1602
页数:5
相关论文
共 50 条