On Parameterised Quadratic Inverse Eigenvalue Problem

被引:2
|
作者
Xiang, Meiling [1 ]
Dai, Hua [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic inverse eigenvalue problem; multiparameter eigenvalue problem; smooth QR-decomposition; Newton method; NUMERICAL-METHODS; ALGORITHM; MATRICES;
D O I
10.4208/eajam.250321.230821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that if prescribed eigenvalues are distinct, then the parameterised quadratic inverse eigenvalue problem is equivalent to a multiparameter eigenvalue problem. Moreover, a sufficient condition for the problem solvability is established. In order to find approximate solution of this problem, we employ the Newton method based on the smooth QR-decomposition with column pivoting and prove its locally quadratic convergence. Numerical examples illustrate the effectiveness of the method. AMS subject classifications: 65F15 Key words: Quadratic inverse eigenvalue problem, multiparameter eigenvalue problem, smooth
引用
收藏
页码:185 / 200
页数:16
相关论文
共 50 条
  • [31] An affine inverse eigenvalue problem
    Elhay, S
    Ram, YM
    INVERSE PROBLEMS, 2002, 18 (02) : 455 - 466
  • [32] ALGORITHMS FOR INVERSE EIGENVALUE PROBLEM
    MOREL, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (26): : 1653 - 1655
  • [33] The recursive inverse eigenvalue problem
    Arav, M
    Hershkowitz, D
    Mehrmann, V
    Schneider, H
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (02) : 392 - 412
  • [34] ON A SINGULAR INVERSE EIGENVALUE PROBLEM
    HOCHSTAD.H
    KIM, MW
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1970, 37 (04) : 243 - &
  • [35] On a recursive inverse eigenvalue problem
    Ikramov, Kh. D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (05) : 743 - 747
  • [36] ON THE INVERSE EIGENVALUE PROBLEM FOR MATRICES
    DEAKIN, AS
    LUKE, TM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (03): : 635 - 648
  • [37] The nonnegative inverse eigenvalue problem
    Egleston, PD
    Lenker, TD
    Narayan, SK
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 : 475 - 490
  • [38] ALGORITHMS FOR INVERSE EIGENVALUE PROBLEM
    MOREL, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (03) : 251 - 273
  • [39] MULTIPLICATIVE INVERSE EIGENVALUE PROBLEM
    DEOLIVEIRA, GN
    CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (02): : 189 - +
  • [40] The λ-τ structured inverse eigenvalue problem
    Monfared, Keivan Hassani
    Shader, Bryan L.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (11): : 2275 - 2300