Resource Allocation in Multi-cell NOMA Systems with Multi-Agent Deep Reinforcement Learning

被引:1
|
作者
Wang, Shichao [1 ]
Wang, Xiaoming [1 ,2 ]
Zhang, Yuhan [1 ]
Xu, Youyun [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Natl Engn Res Ctr Commun & Networking, Nanjing 210003, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
NOMA; resource allocation; multi-cell; multi-agent deep reinforcement learning;
D O I
10.1109/WCNC49053.2021.9417580
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Non-orthogonal multiple access (NOMA) technology can meet user access requirements and improve system capacity. In this paper, we investigate the joint subcarrier assignment and power allocation problem in an uplink multi-cell NOMA system to maximize the energy efficiency (EE) while ensuring the minimum data rate of all users. We propose a multi-agent deep reinforcement learning (MADRL) method with centralized training and distributed execution to solve this dynamic optimization problem. In our method, we design a deep q-network (DQN) with parameter sharing to generate the subcarrier assignment policy, and use multi-agent deep deterministic policy gradient (MADDPG) network for power allocation of NOMA user. Finally, we adjust the entire resource allocation policy by updating the parameters of neural networks according to the reward. The simulation shows that our method has better and more stable sum EE than centralized and distributed methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Multi-Agent Reinforcement Learning for Efficient Resource Allocation in Internet of Vehicles
    Wang, Jun-Han
    He, He
    Cha, Jaesang
    Jeong, Incheol
    Ahn, Chang-Jun
    ELECTRONICS, 2025, 14 (01):
  • [22] Multi-agent reinforcement learning for intelligent resource allocation in IIoT networks
    Rosenberger, Julia
    Urlaub, Michael
    Schramm, Dieter
    2021 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2021, : 118 - 119
  • [23] Resource allocation strategy for vehicular communication networks based on multi-agent deep reinforcement learning
    Liu, Zhibin
    Deng, Yifei
    VEHICULAR COMMUNICATIONS, 2025, 53
  • [24] Federated Multi-Agent Deep Reinforcement Learning for Resource Allocation of Vehicle-to-Vehicle Communications
    Li, Xiang
    Lu, Lingyun
    Ni, Wei
    Jamalipour, Abbas
    Zhang, Dalin
    Du, Haifeng
    IEEE Transactions on Vehicular Technology, 2022, 71 (08): : 8810 - 8824
  • [25] Hybrid Multiple Access Resource Allocation based on Multi-agent Deep Transfer Reinforcement Learning
    Zhang, Yijian
    Wang, Xiaoming
    Li, Dapeng
    Xu, Youyun
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [26] Federated Multi-Agent Deep Reinforcement Learning for Resource Allocation of Vehicle-to-Vehicle Communications
    Li, Xiang
    Lu, Lingyun
    Ni, Wei
    Jamalipour, Abbas
    Zhang, Dalin
    Du, Haifeng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8810 - 8824
  • [27] Multi-Agent Deep Reinforcement Learning-Based Resource Allocation for Cognitive Radio Networks
    Mei, Ruru
    Wang, Zhugang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 4744 - 4757
  • [28] Multi-agent deep reinforcement learning-based energy efficient power allocation in downlink MIMO-NOMA systems
    Jo, Sonnam
    Jong, Chol
    Pak, Changsop
    Ri, Hakchol
    IET COMMUNICATIONS, 2021, 15 (12) : 1642 - 1654
  • [29] Power Allocation in Multi-cell Networks Using Deep Reinforcement Learning
    Zhang, Yong
    Kang, Canping
    Ma, Tengteng
    Teng, Yinglei
    Guo, Da
    2018 IEEE 88TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), 2018,
  • [30] Multi-Agent Reinforcement Learning Based Distributed Multi-User Scheduling and Beamforming Design in Multi-Cell Systems
    Bai, Shaozhuang
    Gao, Zhenzhen
    Liao, Xuewen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 4432 - 4444