Optimal control of the blowup time

被引:8
|
作者
Barron, EN
Liu, WX
机构
[1] Department of Mathematical Sciences, Loyola University of Chicago, Chicago
关键词
blowup time; optimal control; viscosity solutions; Pontryagin principle;
D O I
10.1137/S0363012993245021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of optimal control of the blowup time of a system of nonlinear controlled ordinary differential equations is considered in this paper. The blowup time is defined to be the first time that the norm of the trajectory becomes infinite. When one seeks to maximize the blowup time the pair (V(x),Omega) comes under consideration, where x is an element of R(n) --> V(x) is an element of [0, infinity] is the value function and Omega subset of R(n) is the blowup set. This is the set of initial points from which finite time blowup will occur for any control. We prove that (V, Omega) is the unique viscosity solution of the equation 1 + max(z) DxV(x) . f(x, z) = 0, x is an element of Omega and conditions lim(\x\-->infinity) V(x) = 0,lim(x-->partial derivative Omega) V(x) = +infinity. Finally, we derive the Pontryagin maximum principle for an optimal control. Some generalizations are also discussed.
引用
收藏
页码:102 / 123
页数:22
相关论文
共 50 条
  • [21] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (01): : 71 - 80
  • [22] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    A. R. Danilin
    O. O. Kovrizhnykh
    Proceedings of the Steklov Institute of Mathematics, 2017, 297 : 62 - 71
  • [23] Time-optimal control of a swing
    Kulkarni, JE
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 1729 - 1733
  • [24] Optimal Time Delay in the Control of Epidemic
    Wang, Zhenggang
    Szeto, Kwok Yip
    Leung, Frederick Chi-Ching
    NICSO 2008: NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION, 2009, 236 : 253 - +
  • [25] Time optimal control of spiking neurons
    Nabi, Ali
    Moehlis, Jeff
    JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 64 (06) : 981 - 1004
  • [26] TIME OPTIMAL CONTROL OF A DIELECTROPHORETIC SYSTEM
    Melnyk, Matthew P.
    Chang, Dong Eui
    ASIAN JOURNAL OF CONTROL, 2011, 13 (04) : 480 - 491
  • [27] Time optimal control of ground vehicles
    Max, Gyorgy
    Lantos, Bela
    2014 IEEE 12TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY), 2014, : 245 - 250
  • [28] STOCHASTIC TIME OPTIMAL CONTROL PROBLEM
    HAUSSMANN, UG
    ANDERSON, WJ
    BOYARSKY, A
    SIAM REVIEW, 1974, 16 (04) : 581 - 581
  • [29] Time optimal control of mechatronic systems
    Pirahmadian, Mohammad Hadi
    MECHATRONICS AND COMPUTATIONAL MECHANICS, 2013, 307 : 53 - 56
  • [30] Time optimal control in spin systems
    Khaneja, N
    Brockett, R
    Glaser, SJ
    PHYSICAL REVIEW A, 2001, 63 (03):