On duality and the Spitzer-Pollaczek factorization for random walks

被引:1
|
作者
Kennedy, JE [1 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1016/S0304-4149(98)00026-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new formulation of duality for pairs of stopping times is given. This formulation is constructive in that it provides a method for generating examples of dual times. We also use it to form the basis for a direct sample path proof of the Spitzer-Pollaczek factorization associated with a dual pair. The Spitzer-Pollaczek factorization relates, in a single expression, the distributions of a dual pair of times and the distribution of a random walk at each of these times. The accepted probabilistic derivation introduces an independent geometric time. The direct approach here omits this step and in doing so allows a separate treatment of the stopping time and the stopped random walk distributions and provides clear interpretations for the identities that arise. This novel look at duality makes clear further generalizations of the Spitzer-Pollaczek factorization which must hold and we conclude by proving a matrix factorization associated with a Markov-modulated random walk on R-d. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:251 / 266
页数:16
相关论文
共 50 条
  • [31] Random Walks with Invariant Loop Probabilities: Stereographic Random Walks
    Montero, Miquel
    [J]. ENTROPY, 2021, 23 (06)
  • [32] Random walks with random velocities
    Zaburdaev, Vasily
    Schmiedeberg, Michael
    Stark, Holger
    [J]. PHYSICAL REVIEW E, 2008, 78 (01):
  • [33] Random walks in random environments
    Zeitouni, Ofer
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (40): : R433 - R464
  • [34] Random walks and random permutations
    Forrester, PJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (31): : L417 - L423
  • [35] Random Walks on Random Graphs
    Cooper, Colin
    Frieze, Alan
    [J]. NANO-NET, 2009, 3 : 95 - +
  • [36] Random walk on random walks
    Hilario, M. R.
    den Hollander, F.
    dos Santos, R. S.
    Sidoravicius, V.
    Teixeira, A.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35
  • [37] Random walks in a random environment
    S. R. S. Varadhan
    [J]. Proceedings Mathematical Sciences, 2004, 114 : 309 - 318
  • [38] RANDOM WALKS ON THE RANDOM GRAPH
    Berestycki, Nathanael
    Lubetzky, Eyal
    Peres, Yuval
    Sly, Allan
    [J]. ANNALS OF PROBABILITY, 2018, 46 (01): : 456 - 490
  • [39] How random are random walks?
    Blei, R
    [J]. SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 19 - 31
  • [40] Random duality
    GUO TieXin1
    [J]. Science China Mathematics, 2009, (10) : 2084 - 2098