The Dispersion of the Gauss-Markov Source

被引:0
|
作者
Tian, Peida [1 ]
Kostina, Victoria [1 ]
机构
[1] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Gauss-Markov source produces U-i = aU(i-1) + Z(i) for i >= 1, where U-0 = 0, vertical bar a vertical bar < 1 and Z(i) similar to N(0, sigma(2)) are i.i.d. Gaussian random variables. We consider lossy compression of a block of n samples of the Gauss-Markov source under squared error distortion. We obtain the Gaussian approximation for the Gauss-Markov source with excess-distortion criterion for any distortion d > 0, and we show that the dispersion has a reverse waterfilling representation. This is the first finite blocklength result for lossy compression of sources with memory. We prove that the finite blocklength rate-distortion function R(n, d, epsilon) approaches the rate-distortion function R(d) as R(n, d, epsilon) = R(d) + root V(d)/nQ(-1) (epsilon) + o (1/root n), where V(d) is the dispersion, epsilon is an element of (0, 1) is the excess-distortion probability, and Q(-1) is the inverse of the Q-function. We give a reverse waterfilling integral representation for the dispersion V(d), which parallels that of the rate-distortion functions for Gaussian processes. Remarkably, for all 0 < d <= sigma(2)/(1+vertical bar a vertical bar)(2), R(n, d, epsilon) of the Gauss-Markov source coincides with that of Zi, the i.i.d. Gaussian noise driving the process, up to the second-order term. Among novel technical tools developed in this paper is a sharp approximation of the eigenvalues of the covariance matrix of n samples of the Gauss-Markov source, and a construction of a typical set using the maximum likelihood estimate of the parameter a based on n observations.
引用
收藏
页码:1490 / 1494
页数:5
相关论文
共 50 条
  • [21] GAUSS-MARKOV PROCESSES ON HILBERT SPACES
    Goldys, Ben
    Peszat, Szymon
    Zabczyk, Jerzy
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (01) : 89 - 108
  • [22] OPTIMAL FILTERING FOR GAUSS-MARKOV NOISE
    STEAR, EB
    STUBBERUD, AR
    INTERNATIONAL JOURNAL OF CONTROL, 1968, 8 (02) : 123 - +
  • [23] ON THE AVERAGE PRODUCT OF GAUSS-MARKOV VARIABLES
    LOGAN, BF
    MAZO, JE
    ODLYZKO, AM
    SHEPP, LA
    BELL SYSTEM TECHNICAL JOURNAL, 1983, 62 (10): : 2993 - 3006
  • [24] Algorithms for structured Gauss-Markov regression
    Forbes, Alistair B.
    ALGORITHMS FOR APPROXIMATION, PROCEEDINGS, 2007, : 167 - 185
  • [25] Sensitivity analysis in Gauss-Markov models
    Ding, X
    Coleman, R
    JOURNAL OF GEODESY, 1996, 70 (08) : 480 - 488
  • [26] A PROPERTY OF THE DISPERSION MATRIX OF THE BEST LINEAR UNBIASED ESTIMATOR IN THE GENERAL GAUSS-MARKOV MODEL
    BAKSALARY, JK
    PUNTANEN, S
    STYAN, GPH
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1990, 52 : 279 - 296
  • [27] Strong consistency under Gauss-Markov Condition
    陈希孺
    金明仲
    Science China Mathematics, 1996, (02) : 137 - 147
  • [28] ON CHARACTERIZATION OF THE NORMAL LAW IN THE GAUSS-MARKOV MODEL
    STEPNIAK, C
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1991, 53 : 115 - 117
  • [29] A NOTE CONCERNING A GENERALIZATION OF GAUSS-MARKOV THEOREM
    DECELL, HP
    ODELL, PL
    TEXAS JOURNAL OF SCIENCE, 1966, 18 (01): : 21 - &
  • [30] A sequential bayesian beamformer for Gauss-Markov signals
    Lam, CWJ
    Singer, AC
    SAM2002: IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS, 2002, : 28 - 32