Reaction intermediate-induced vapor-liquid-solid growth of silicon oxide nanowires

被引:3
|
作者
Huson, Joseph J. [1 ]
Sheng, Tao [2 ,3 ]
Ogle, Ezekiel [1 ]
Zhang, Haitao [1 ]
机构
[1] Univ N Carolina, Dept Mech Engn & Engn Sci, 9201 Univ City Blvd, Charlotte, NC 28223 USA
[2] Univ N Carolina, Dept Phys & Opt Sci, 9201 Univ City Blvd, Charlotte, NC 28223 USA
[3] Univ N Carolina, Opt Sci & Engn Program, 9201 Univ City Blvd, Charlotte, NC 28223 USA
来源
CRYSTENGCOMM | 2018年 / 20卷 / 45期
基金
美国国家科学基金会;
关键词
SEMICONDUCTOR NANOWIRES; ALTERNATIVE CATALYSTS; TUNGSTEN-OXIDE;
D O I
10.1039/c8ce01115j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The vapor-liquid-solid (VLS) process is the most popular vapor-phase method for the controlled growth of various one-dimensional (1D) nanostructures with the assistance of catalyst particles. In a typical VLS process, precursors for the desired deposits are introduced intentionally during the growth and catalysts are employed to promote the formation of 1D nanostructures. However, in this study, we report a new VLS growth mode for unexpected 1D nanostructure growth without directly introducing corresponding source materials. In the nanostructure growth of a compound semiconductor, ZnTe, besides the expected ZnTe nanowire arrays, the unexpected growth of jellyfish-like SiOx nanowires has been observed. The study of the growth mechanism reveals that the reaction intermediates from the ZnTe growth, Te-based vapor species, induced the growth by producing Si vapor, while Au catalysts promoted the growth of the nanostructures. Detailed growth processes in this new VLS mode have been analyzed. This study will attract attention towards composition and phase controls for the growth of compound semiconductor nanostructures. The new growth mode can be extended to realize convenient growth of other nanomaterials with lower temperature and lower cost.
引用
收藏
页码:7256 / 7265
页数:10
相关论文
共 50 条
  • [41] Vapor-liquid-solid and vapor-solid growth of self-catalyzed GaAs nanowires
    Ambrosini, S.
    Fanetti, M.
    Grillo, V.
    Franciosi, A.
    Rubini, S.
    AIP ADVANCES, 2011, 1 (04):
  • [42] Catalytic growth of nanowires: Vapor-liquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth
    Kolasinski, Kurt W.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2006, 10 (3-4): : 182 - 191
  • [43] Controlled vapor-liquid-solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport
    Johnson, M. C.
    Aloni, S.
    McCready, D. E.
    Bourret-Courchesne, E. D.
    CRYSTAL GROWTH & DESIGN, 2006, 6 (08) : 1936 - 1941
  • [44] Vapor-liquid-solid massive growth of hexagonal indium nitride nanowires
    Liu, Hai-Bin
    Cheng, Guo-Sheng
    Xie, Si-Shen
    Gongneng Cailiao/Journal of Functional Materials, 2010, 41 (12): : 2094 - 2097
  • [45] Vapor-Liquid-Solid Growth of Nanowires under the Conditions of External Faceting
    Levchenko, Elena V.
    Nebol'sin, Valery A.
    Yuryev, Vladimir A.
    Swaikat, Nada
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2024, 261 (01):
  • [46] Oscillations of Truncation in Vapor-Liquid-Solid Nanowires
    Dubrovskii, Vladimir G.
    Glas, Frank
    CRYSTAL GROWTH & DESIGN, 2024,
  • [47] Length distributions of vapor-liquid-solid nanowires
    Berdnikov, Yu.
    Dubrovskii, V. G.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 384 - 384
  • [48] Critical parameters of the vapor-liquid-solid growth of silicon whiskers
    V. A. Nebol’sin
    A. I. Dunaev
    A. A. Dolgachev
    M. A. Zavalishin
    G. A. Sladkikh
    V. V. Korneeva
    A. Yu. Eframeev
    Inorganic Materials, 2011, 47 : 11 - 15
  • [49] GROWTH OF SILICON CARBIDE NEEDLES BY THE VAPOR-LIQUID-SOLID METHOD
    BERMAN, I
    RYAN, CE
    JOURNAL OF CRYSTAL GROWTH, 1971, 9 (01) : 314 - &
  • [50] Role of surface energy in the vapor-liquid-solid growth of silicon
    Nebol'sin, VA
    Shchetinin, AA
    INORGANIC MATERIALS, 2003, 39 (09) : 899 - 903