Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser

被引:52
|
作者
Choi, Hyunyong [1 ,2 ,3 ]
Gkortsas, Vasileios-Marios [4 ,5 ]
Diehl, Laurent [6 ]
Bour, David [7 ]
Corzine, Scott [7 ]
Zhu, Jintian [7 ]
Hoefler, Gloria [7 ]
Capasso, Federico [6 ]
Kaertner, Franz X. [4 ,5 ]
Norris, Theodore B. [1 ,2 ]
机构
[1] Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[6] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[7] Agilent Labs, Palo Alto, CA 94304 USA
基金
美国国家科学基金会;
关键词
RESONANCE;
D O I
10.1038/NPHOTON.2010.205
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Pulse propagation phenomena are central to ultrashort pulse generation and amplification in lasers(1-5). In the coherent regime, the phase relationship between the pulse and the material transition is preserved, allowing both optical fields and material states to be controlled(6). The most prominent form of coherent manipulation is Rabi flopping(7), a phenomenon well established in few-level absorbers, including atoms and single quantum dots(8-19). However, Rabi flopping is generally much weaker in semiconductors because of strong dephasing in the electronic bands, in contrast to discrete-level systems. Although low-density induced coherent oscillations have been observed in semiconductor absorbers(11,13-20), coherent pulse propagation phenomena in active semiconductor devices have not been observed. In this Letter, we explore coherent pulse propagation in an operating quantum cascade laser and directly observe Rabi flopping and coherent pulse reshaping. This work demonstrates the applicability of few-level models for quantum cascade lasers and may stimulate novel approaches to short pulse generation(21,22).
引用
收藏
页码:706 / 710
页数:5
相关论文
共 50 条
  • [31] Coherent injection locking of quantum cascade laser frequency combs
    Hillbrand, Johannes
    Andrews, Aaron Maxwell
    Detz, Hermann
    Strasser, Gottfried
    Schwarz, Benedikt
    NATURE PHOTONICS, 2019, 13 (02) : 101 - +
  • [32] Analysis of Controlled Rabi Flopping in a Double Rephasing Photon Echo Scheme for Quantum Memories
    Ullah, Rahmat
    Ham, Byoung S.
    ENTROPY, 2020, 22 (09)
  • [33] Effect of laser pulse propagation on ultrafast magnetization dynamics in a birefringent medium
    de Jong, J. A.
    Kalashnikova, A. M.
    Pisarev, R. V.
    Balbashov, A. M.
    Kimel, A. V.
    Kirilyuk, A.
    Rasing, Th
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (16)
  • [34] Theory of the ultrafast nonlinear response of terahertz quantum cascade laser structures
    Weber, C.
    Banit, F.
    Butscher, S.
    Knorr, A.
    Wacker, A.
    APPLIED PHYSICS LETTERS, 2006, 89 (09)
  • [35] Detection of ultrafast laser ablation using quantum cascade laser-based sensing
    Mezzapesa, F. P.
    Spagnolo, V.
    Ancona, A.
    Scamarcio, G.
    APPLIED PHYSICS LETTERS, 2012, 101 (17)
  • [36] Pulse propagation solution for a quantum free electron laser
    Volpe, L.
    Piovella, N.
    LASER PHYSICS, 2007, 17 (06) : 807 - 813
  • [37] Rabi-flopping of the ground state exciton in a single self-assembled quantum dot
    Beham, E
    Zrenner, A
    Findeis, F
    Bichler, M
    Abstreiter, G
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2003, 238 (02): : 366 - 369
  • [38] A terahertz pulse emitter monolithically integrated with a quantum cascade laser
    Burghoff, David
    Kao, Tsung-Yu
    Ban, Dayan
    Lee, Alan Wei Min
    Hu, Qing
    Reno, John
    APPLIED PHYSICS LETTERS, 2011, 98 (06)
  • [39] Ultrafast pulse propagation in direct gap semiconductor quantum well waveguide structures
    Kapoor, S
    Sen, PK
    SUPERLATTICES AND MICROSTRUCTURES, 2002, 32 (2-3) : 117 - 133
  • [40] Coherent pulse propagation in GaSe
    Kishimoto, T
    Takahashi, H
    Hasegawa, A
    Minami, F
    JOURNAL OF LUMINESCENCE, 2006, 119 : 323 - 326