Hyperspectral Unmixing Using Spectral Library Sparse Scaling and Guided Filter

被引:0
|
作者
Zhang, Zuoyu [1 ]
Liao, Shouyi [1 ]
Fang, Hao [1 ]
Zhang, Hexin [1 ]
Wang, Shicheng [1 ]
机构
[1] Xian Res Inst High Technol, Xian 710025, Peoples R China
基金
中国国家自然科学基金;
关键词
Libraries; Hyperspectral imaging; TV; Image edge detection; Collaboration; Optimization; Dictionary mismatch; guided filter (GF); hyperspectral unmixing; spectral library sparse scaling; spectral variability; SPATIAL REGULARIZATION; VARIABILITY; REGRESSION;
D O I
10.1109/LGRS.2020.3025920
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sparse regression based on spectral libraries has become a promising alternative for addressing the hyperspectral unmixing problem. However, the actual endmembers of a scene are usually inconsistent with the corresponding spectral signatures in the spectral library, which largely limits the performance of sparse regression approaches. In this letter, a new sparse regression algorithm considering spectral library mismatch is proposed, which allows the spectral signatures in the spectral library to independently scale in each band and regularizes the differential of the scaling factors to be sparse. Moreover, a guided filter (GF)-based regularizer is introduced to explore the spatial-contextual information. The spectral library sparse scaling and GF constraints are combined to mitigate the impact of the spectral library mismatch. Experimental results on both synthetic and real data show that the proposed algorithm outperforms other methods that address the spectral library mismatch problem.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] SUPERPIXEL-GUIDED SPARSE UNMIXING FOR REMOTELY SENSED HYPERSPECTRAL IMAGERY
    Zhang, Shaoquan
    Deng, Chengzhi
    Li, Jun
    Wang, Shengqian
    Li, Fan
    Xu, Chenguang
    Plaza, Antonio
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2155 - 2158
  • [32] UNMIXING SPARSE HYPERSPECTRAL MIXTURES
    Lordache, Marian-Daniel
    Bioucas-Dias, Jose
    Plaza, Antonio
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2465 - +
  • [33] SPARSE DISTRIBUTED HYPERSPECTRAL UNMIXING
    Sigurdsson, Jakob
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Bioucas-Dias, Jose M.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6994 - 6997
  • [34] Hyperspectral Unmixing with Spectral Variability Using Endmember Guided Probabilistic Generative Deep Learning
    Lyngdoh, Rosly B.
    Dave, Rucha
    Anand, S. S.
    Ahmad, Touseef
    Misra, Arundhati
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1768 - 1771
  • [35] Sparse Unmixing of Hyperspectral Data
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06): : 2014 - 2039
  • [36] Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
    Wan, Lulu
    Chen, Tao
    Plaza, Antonio
    Cai, Haojie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11669 - 11682
  • [37] Spectral weighted sparse unmixing of hyperspectral images based on framelet transform
    Xu C.
    Xu H.
    Yu C.
    Deng C.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (09): : 1404 - 1417
  • [38] Local Spectral Similarity Preserving Regularized Robust Sparse Hyperspectral Unmixing
    Li, Jiaojiao
    Li, Yunsong
    Song, Rui
    Mei, Shaohui
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7756 - 7769
  • [39] Spectral-Spatial Weighted Sparse Regression for Hyperspectral Image Unmixing
    Zhang, Shaoquan
    Li, Jun
    Li, Heng-Chao
    Deng, Chengzhi
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3265 - 3276
  • [40] Fast Hyperspectral Unmixing Using a Multiscale Sparse Regularization
    Ince, Taner
    Dobigeon, Nicolas
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19