Some Fractional Dynamic Inequalities of Hardy's Type via Conformable Calculus

被引:23
|
作者
Saker, Samir [1 ]
Kenawy, Mohammed [2 ]
AlNemer, Ghada [3 ]
Zakarya, Mohammed [4 ,5 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Fayoum Univ, Fac Sci, Dept Math, Al Fayyum 63514, Egypt
[3] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 105862, Riyadh 11656, Saudi Arabia
[4] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[5] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
关键词
fractional hardy's inequality; fractional bennett's inequality; fractional copson's inequality; fractional leindler's inequality; timescales; conformable fractional calculus; fractional holder inequality; 26A15; 26D10; 26D15; 39A13; 34A40; 34N05;
D O I
10.3390/math8030434
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove some new fractional dynamic inequalities on time scales via conformable calculus. By using chain rule and Holder's inequality on timescales we establish the main results. When <mml:semantics>alpha =1</mml:semantics> we obtain some well-known time-scale inequalities due to Hardy, Copson, Bennett and Leindler inequalities.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] FRACTIONAL HARDY TYPE INEQUALITIES VIA CONFORMABLE CALCULUS
    Saker, S. H.
    O'Regan, D.
    Kenawy, M. R.
    Agarwal, R. P.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2018, 73 : 131 - 140
  • [2] Some Hardy's inequalities on conformable fractional calculus
    AlNemer, Ghada
    Saker, Samir H.
    Ashry, Gehad M.
    Zakarya, Mohammed
    Rezk, Haytham M.
    Kenawy, Mohammed R.
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [3] Generalizations of Hardy's Type Inequalities via Conformable Calculus
    AlNemer, Ghada
    Kenawy, Mohammed
    Zakarya, Mohammed
    Cesarano, Clemente
    Rezk, Haytham M.
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 13
  • [4] Hardy-Leindler-Type Inequalities via Conformable Delta Fractional Calculus
    Rezk, H. M.
    Albalawi, Wedad
    El-Hamid, H. A. Abd
    Saied, Ahmed I.
    Bazighifan, Omar
    Mohamed, Mohamed S.
    Zakarya, M.
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [5] Fractional Leindler's Inequalities via Conformable Calculus
    AlNemer, Ghada
    Kenawy, Mohammed R.
    Rezk, Haytham M.
    El-Deeb, Ahmed A.
    Zakarya, Mohammed
    SYMMETRY-BASEL, 2022, 14 (10):
  • [6] ON SOME HARDY-TYPE INEQUALITIES FOR FRACTIONAL CALCULUS OPERATORS
    Iqbal, Sajid
    Pecaric, Josip
    Samraiz, Muhammad
    Tomovski, Zivorad
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (02): : 438 - 457
  • [7] Some New Bennett-Leindler Type Inequalities via Conformable Fractional Nabla Calculus
    AlNemer, Ghada
    Zakarya, Mohammed
    Butush, Roqia
    Rezk, Haytham M.
    SYMMETRY-BASEL, 2022, 14 (10):
  • [8] Some fractional dynamic inequalities on time scales of Hardy's type
    Sayed, A. G.
    Saker, S. H.
    Ahmed, A. M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (02): : 98 - 109
  • [9] Some generalizations of dynamic Opial-type inequalities in conformable calculus
    Khamis, Fatma M.
    El-Sheikh, M. M. A.
    Abdeljawad, Thabet
    Mukheimer, Aiman
    Ismail, Gamal A. F.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [10] Noninstantaneous impulsive inequalities via conformable fractional calculus
    Sitho, Surang
    Ntouyas, Sotiris K.
    Agarwal, Praveen
    Tariboon, Jessada
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,