Generalizations of Hardy's Type Inequalities via Conformable Calculus

被引:13
|
作者
AlNemer, Ghada [1 ]
Kenawy, Mohammed [2 ,3 ]
Zakarya, Mohammed [4 ,5 ]
Cesarano, Clemente [6 ]
Rezk, Haytham M. [7 ]
机构
[1] Princess Nourah bint Abdul Rahman Univ, Coll Sci, Dept Math Sci, POB 105862, Riyadh 11656, Saudi Arabia
[2] Fayoum Univ, Fac Sci, Dept Math, Al Fayyum 63514, Egypt
[3] Acad Sci Res & Technol, 101 Kasr Al Aini ST, Cairo 11334, Egypt
[4] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[5] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
[6] Univ Telemat Int Uninettuno, Sect Math, I-00186 Rome, Italy
[7] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Egypt
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 02期
关键词
Hardy's inequality; conformable fractional derivative; conformable fractional integral; Holder 's inequality;
D O I
10.3390/sym13020242
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we derive some new fractional extensions of Hardy's type inequalities. The corresponding reverse relations are also obtained by using the conformable fractional calculus from which the classical integral inequalities are deduced as special cases at alpha = 1.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 50 条
  • [1] FRACTIONAL HARDY TYPE INEQUALITIES VIA CONFORMABLE CALCULUS
    Saker, S. H.
    O'Regan, D.
    Kenawy, M. R.
    Agarwal, R. P.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2018, 73 : 131 - 140
  • [2] Some Fractional Dynamic Inequalities of Hardy's Type via Conformable Calculus
    Saker, Samir
    Kenawy, Mohammed
    AlNemer, Ghada
    Zakarya, Mohammed
    MATHEMATICS, 2020, 8 (03)
  • [3] Hardy-Leindler-Type Inequalities via Conformable Delta Fractional Calculus
    Rezk, H. M.
    Albalawi, Wedad
    El-Hamid, H. A. Abd
    Saied, Ahmed I.
    Bazighifan, Omar
    Mohamed, Mohamed S.
    Zakarya, M.
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [4] Some Hardy's inequalities on conformable fractional calculus
    AlNemer, Ghada
    Saker, Samir H.
    Ashry, Gehad M.
    Zakarya, Mohammed
    Rezk, Haytham M.
    Kenawy, Mohammed R.
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [5] Some generalizations of dynamic Opial-type inequalities in conformable calculus
    Khamis, Fatma M.
    El-Sheikh, M. M. A.
    Abdeljawad, Thabet
    Mukheimer, Aiman
    Ismail, Gamal A. F.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [6] Generalizations of some weighted Opial-type inequalities in conformable calculus
    Saker, S. H.
    Ashry, G. M.
    Kenawy, M. R.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 30 (01): : 30 - 37
  • [7] Generalizations of some integral inequalities related to Hardy type integral inequalities via (p,q)-calculus
    Thongjob, Suriyakamol
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sortiris K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01):
  • [8] Fractional Leindler's Inequalities via Conformable Calculus
    AlNemer, Ghada
    Kenawy, Mohammed R.
    Rezk, Haytham M.
    El-Deeb, Ahmed A.
    Zakarya, Mohammed
    SYMMETRY-BASEL, 2022, 14 (10):
  • [9] Generalizations of Hardy Type Inequalities by Taylor's Formula
    Krulic Himmelreich, Kristina
    MATHEMATICA SLOVACA, 2022, 72 (01) : 67 - 84
  • [10] New bounds for the Ostrowski-type inequalities via conformable fractional calculus
    Usta F.
    Budak H.
    Tunç T.
    Sarikaya M.Z.
    Arabian Journal of Mathematics, 2018, 7 (4) : 317 - 328