Optimal solution of a reaction-diffusion system with a control discrete source term

被引:0
|
作者
Araujo, A. [1 ]
Patricio, F. [1 ]
Santos, Jose L. [1 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
关键词
diffusive-reactive system; finite differences; optimization problem;
D O I
10.1002/cnm.1409
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper we study the numerical behavior of a reaction-diffusion system with a control source point. The main goal consists in estimating the position of the source point that maximizes a given objective function. To reduce the number of variables involved in the optimization algorithm, we first consider the problem with a fixed source point and then, according to the numerical results obtained, we estimate an approximation to the objective function, adjusting, by least squares, a special class of functions that depend on a few number of parameters. With this procedure we obtain an effective way to define the position of the source term. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:186 / 197
页数:12
相关论文
共 50 条
  • [31] Persistence of a discrete reaction-diffusion predator-prey system
    Tineo, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (05) : 627 - 634
  • [32] Optimal control for nonlocal reaction-diffusion system describing calcium dynamics in cardiac cell
    Bendahmane, Mostafa
    Erraji, Elmahdi
    Karami, Fahd
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4802 - 4834
  • [33] Optimal control problem for a general reaction-diffusion tumor-immune system with chemotherapy
    Dai, Feng
    Liu, Bin
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (01): : 448 - 473
  • [34] ON THE SOLUTION OF REACTION-DIFFUSION EQUATIONS
    HILL, JM
    IMA JOURNAL OF APPLIED MATHEMATICS, 1981, 27 (02) : 177 - 194
  • [35] THE OPTIMAL CONTROL OF AN HIV/AIDS REACTION-DIFFUSION EPIDEMIC MODEL
    Chorfi, Nouar
    Bendoukha, Samir
    Abdelmalek, Salem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [36] Optimal control of fractional reaction-diffusion equations with Poisson jumps
    N. Durga
    P. Muthukumar
    The Journal of Analysis, 2019, 27 : 605 - 621
  • [37] OPTIMAL CONTROL OF ADVECTIVE DIRECTION IN REACTION-DIFFUSION POPULATION MODELS
    Finotti, Heather
    Lenhart, Suzanne
    Van Phan, Tuoc
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2012, 1 (01): : 81 - 107
  • [38] Optimal control of dengue vector based on a reaction-diffusion model?
    Li, Yazhi
    Wang, Yan
    Liu, Lili
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 : 250 - 270
  • [39] Optimal control of fractional reaction-diffusion equations with Poisson jumps
    Durga, N.
    Muthukumar, P.
    JOURNAL OF ANALYSIS, 2019, 27 (02): : 605 - 621
  • [40] Heat transfer in a reaction-diffusion system with a moving heat source
    Chatterjee, Ajay
    Chaturvedi, Sidharth
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (1-3) : 326 - 337