Optimal solution of a reaction-diffusion system with a control discrete source term

被引:0
|
作者
Araujo, A. [1 ]
Patricio, F. [1 ]
Santos, Jose L. [1 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
关键词
diffusive-reactive system; finite differences; optimization problem;
D O I
10.1002/cnm.1409
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper we study the numerical behavior of a reaction-diffusion system with a control source point. The main goal consists in estimating the position of the source point that maximizes a given objective function. To reduce the number of variables involved in the optimization algorithm, we first consider the problem with a fixed source point and then, according to the numerical results obtained, we estimate an approximation to the objective function, adjusting, by least squares, a special class of functions that depend on a few number of parameters. With this procedure we obtain an effective way to define the position of the source term. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:186 / 197
页数:12
相关论文
共 50 条
  • [1] Optimal solution of a diffusion equation with a discrete source term
    Araujo, A.
    Patricio, F.
    Santos, Jose L.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (09) : 1176 - 1187
  • [2] Optimal control strategies for a reaction-diffusion epidemic system
    Zhou, Min
    Xiang, Huili
    Li, Zuxiong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 : 446 - 464
  • [3] On the dynamics of a discrete reaction-diffusion system
    Azmy, Y.Y.
    Protopopescu, V.
    Numerical Methods for Partial Differential Equations, 1991, 7 (04) : 385 - 405
  • [4] Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology
    Chamakuri Nagaiah
    Karl Kunisch
    Gernot Plank
    Computational Optimization and Applications, 2011, 49 : 149 - 178
  • [5] Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology
    Nagaiah, Chamakuri
    Kunisch, Karl
    Plank, Gernot
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (01) : 149 - 178
  • [6] Optimal Control Problem for Cancer Invasion Reaction-Diffusion System
    Shangerganesh, Lingeshwaran
    Sowndarrajan, Puthur Thangaraj
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (14) : 1574 - 1593
  • [7] Optimal Control Problem for a Reaction-Diffusion System of Three Populations
    Wang, Xiaoni
    Guo, Gaihui
    Li, Jian
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (04) : 808 - 828
  • [8] Optimal control of networked reaction-diffusion systems
    Gao, Shupeng
    Chang, Lili
    Romic, Ivan
    Wang, Zhen
    Jusup, Marko
    Holme, Petter
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (188)
  • [9] An Optimal Control Problem for a Predator-Prey Reaction-Diffusion System
    Apreutesei, N. C.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (06) : 180 - 195
  • [10] OPTIMAL CONTROL OF REACTION-DIFFUSION SYSTEMS WITH HYSTERESIS
    Muench, Christian
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (04) : 1453 - 1488