Simulation Study of Allied In-Situ Injection and Production for Enhancing Shale Oil Recovery and CO2 Emission Control

被引:6
|
作者
Yu, Haiyang [1 ]
Qi, Songchao [1 ]
Chen, Zhewei [1 ]
Cheng, Shiqing [1 ]
Xie, Qichao [2 ]
Qu, Xuefeng [2 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[2] Petro China Changqing Oilfield Co, Res Inst Explorat & Dev, Xian 710018, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
allied in-situ injection and production (AIIP); CO2 huff and puff; shale oil reservoirs; enhanced oil recovery; HUFF-N-PUFF; PERFORMANCE; RESERVOIRS; OPTIMIZATION; SCALE;
D O I
10.3390/en12203961
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The global greenhouse effect makes carbon dioxide (CO2) emission reduction an important task for the world, however, CO2 can be used as injected fluid to develop shale oil reservoirs. Conventional water injection and gas injection methods cannot achieve desired development results for shale oil reservoirs. Poor injection capacity exists in water injection development, while the time of gas breakthrough is early and gas channeling is serious for gas injection development. These problems will lead to insufficient formation energy supplement, rapid energy depletion, and low ultimate recovery. Gas injection huff and puff (huff-n-puff), as another improved method, is applied to develop shale oil reservoirs. However, the shortcomings of huff-n-puff are the low sweep efficiency and poor performance for the late development of oilfields. Therefore, this paper adopts firstly the method of Allied In-Situ Injection and Production (AIIP) combined with CO2 huff-n-puff to develop shale oil reservoirs. Based on the data of Shengli Oilfield, a dual-porosity and dual-permeability model in reservoir-scale is established. Compared with traditional CO2 huff-n-puff and depletion method, the cumulative oil production of AIIP combined with CO2 huff-n-puff increases by 13,077 and 17,450 m(3) respectively, indicating that this method has a good application prospect. Sensitivity analyses are further conducted, including injection volume, injection rate, soaking time, fracture half-length, and fracture spacing. The results indicate that injection volume, not injection rate, is the important factor affecting the performance. With the increment of fracture half-length and the decrement of fracture spacing, the cumulative oil production of the single well increases, but the incremental rate slows down gradually. With the increment of soaking time, cumulative oil production increases first and then decreases. These parameters have a relatively suitable value, which makes the performance better. This new method can not only enhance shale oil recovery, but also can be used for CO2 emission control.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Numerical study on natural gas injection with allied in-situ injection and production for improving shale oil recovery
    Yu, Haiyang
    Song, Jiabang
    Chen, Zhewei
    Zhang, Yu
    Wang, Yang
    Yang, Weipeng
    Lu, Jun
    FUEL, 2022, 318
  • [2] An innovative nitrogen injection assisted in-situ conversion process for oil shale recovery: Mechanism and reservoir simulation study
    Pei, Shufeng
    Wang, Yanyong
    Zhang, Liang
    Huang, Lijuan
    Cui, Guodong
    Zhang, Panfeng
    Ren, Shaoran
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 171 : 507 - 515
  • [3] Supercritical CO2 Breaking Through a Water Bridge and Enhancing Shale Oil Recovery: A Molecular Dynamics Simulation Study
    Liu, Bing
    Liu, Wenyu
    Pan, Zhiming
    Yu, Leyang
    Xie, Zhiyang
    Lv, Guangzhong
    Zhao, Peihe
    Chen, Dongmeng
    Fang, Wenjing
    ENERGY & FUELS, 2022, 36 (14) : 7558 - 7568
  • [4] Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery
    Lang D.
    Lun Z.
    Lyu C.
    Wang H.
    Zhao Q.
    Sheng H.
    Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, 2021, 48 (03): : 603 - 612
  • [5] Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery
    LANG Dongjiang
    LUN Zengmin
    LYU Chengyuan
    WANG Haitao
    ZHAO Qingmin
    SHENG Han
    Petroleum Exploration and Development, 2021, (03) : 702 - 712
  • [6] Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery
    Lang Dongjiang
    Lun Zengmin
    Lyu Chengyuan
    Wang Haitao
    Zhao Qingmin
    Sheng Hang
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2021, 48 (03) : 702 - 712
  • [7] Nuclear magnetic resonance study on enhanced shale oil recovery by CO2 injection: A case study
    Gong, Houjian
    Qin, Xuejie
    Pu, Jun
    Lv, Wei
    Xu, Long
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (01) : 678 - 689
  • [8] Effects of CO2 injection volume and formation of in-situ new phase on oil phase behavior during CO2 injection for enhanced oil recovery (EOR) in tight oil reservoirs
    Zuo, Mingsheng
    Chen, Hao
    Qi, Xinyu
    Liu, Xiliang
    Xu, Chenghao
    Yu, Haizeng
    Brahim, Mahaman Sidi
    Wu, Yi
    Liu, Haipeng
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [9] Pilot test of in-situ steam injection for oil and gas production from oil shale and applicability of multi-mode in-situ thermal recovery technology
    Kang Z.
    Zhao Y.
    Yang D.
    Zhao J.
    Wang L.
    Shiyou Xuebao/Acta Petrolei Sinica, 2021, 42 (11): : 1458 - 1468
  • [10] Mechanism of CO2 enhanced oil recovery in kerogen pores and CO2 sequestration in shale: A molecular dynamics simulation study
    Sui, Hongguang
    Zhang, Fengyun
    Zhang, Lei
    Wang, Ziqiang
    Yuan, Songling
    Wang, Diansheng
    Wang, Yudou
    FUEL, 2023, 349