Mechanism of CO2 enhanced oil recovery in kerogen pores and CO2 sequestration in shale: A molecular dynamics simulation study

被引:19
|
作者
Sui, Hongguang [1 ]
Zhang, Fengyun [1 ]
Zhang, Lei [2 ]
Wang, Ziqiang [3 ]
Yuan, Songling [1 ]
Wang, Diansheng [1 ]
Wang, Yudou [1 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
[3] PetroChina Xinjiang Oilfield Co, Res Inst Expt & Detect, Karamay 834000, Peoples R China
基金
中国国家自然科学基金;
关键词
Enhanced oil recovery; Kerogen pores; CO2; flooding; sequestration; Storage capacity; LIQUID-VAPOR INTERFACE; METHANE ADSORPTION; GAS-RESERVOIRS; CARBON-DIOXIDE; ORGANIC TYPE; DIFFUSION; PHASE; NANOPORES; PERMEABILITY; INJECTION;
D O I
10.1016/j.fuel.2023.128692
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The strong interactions between kerogen and CO2 give an opportunity to enhance shale oil recovery (EOR) by CO2 injection, and also reduce greenhouse gas emissions through CO2 capture and geological storage. Under-standing the mechanism of CO2 enhanced shale oil recovery is important significance for achieving optimum shale oil exploration and development. In this work, the oil storage behavior and mechanism of CO2 enhanced shale oil recovery in kerogen pores are studied by using molecular dynamics (MD) simulations. For oil storage, the density curves are calculated and the results show that it can be found that there are two adsorption layers near the wall, and the slight fluctuations density near the two opposite wall presents different trends due to the roughness of the walls surface. For flooding behavior, CO2 molecules are easily dissolved into the oil phase and drive out most of the oil within the kerogen slit pores after 3 ns with differential pressure of 10 MPa for our model. The higher differential pressure corresponds to earlier CO2 breakthrough and smaller value of oil re-covery. Oil molecules located in smaller pores require a longer flooding time to be displaced. The displacement is the main mechanism of oil recovery in nanoscale kerogen pores for CO2 flooding. The diffusion coefficients of CO2/oil and interaction energy are calculated and analyzed. Further, the CO2 storage capacity in shale forma-tions are computed and its value is 466 kg/m3. This work reveals oil storage behavior and the mechanism of CO2 flooding in shale reservoirs, and the results are significant for the CO2 enhancement of oil recovery, and for CO2 capture and storage in kerogen pores.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Molecular Simulation of CO2/CH4 Competitive Adsorption on Shale Kerogen for CO2 Sequestration and Enhanced Gas Recovery
    Wang, Tianyu
    Tian, Shouceng
    Li, Gensheng
    Sheng, Mao
    Ren, Wenxi
    Liu, Qingling
    Zhang, Shikun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (30): : 17009 - 17018
  • [2] Mechanism of shale oil displacement by CO2 in nanopores: A molecular dynamics simulation study
    Wu, Zhengbin
    Sun, Zhe
    Shu, Kun
    Jiang, Shu
    Gou, Qiyang
    Chen, Zhangxing
    [J]. ADVANCES IN GEO-ENERGY RESEARCH, 2024, 11 (02): : 141 - 151
  • [3] Mechanism of CO2 enhanced oil recovery in shale reservoirs
    Hai-Bo Li
    Zheng-Ming Yang
    Rui-Shan Li
    Ti-Yao Zhou
    He-Kun Guo
    Xue-Wei Liu
    Yi-Xin Dai
    Zhen-Guo Hu
    Huan Meng
    [J]. Petroleum Science, 2021, 18 (06) : 1788 - 1796
  • [4] Mechanism of CO2 enhanced oil recovery in shale reservoirs
    Li, Hai-Bo
    Yang, Zheng-Ming
    Li, Rui-Shan
    Zhou, Ti-Yao
    Guo, He-Kun
    Liu, Xue-Wei
    Dai, Yi-Xin
    Hu, Zhen-Guo
    Meng, Huan
    [J]. PETROLEUM SCIENCE, 2021, 18 (06) : 1788 - 1796
  • [5] CO2 sequestration with enhanced shale gas recovery
    Liu, Danqing
    Li, Yilian
    Yang, Seng
    Agarwal, Ramesh K.
    [J]. ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021, 43 (24) : 3227 - 3237
  • [6] Enhanced gas recovery by CO2 sequestration in marine shale: a molecular view based on realistic kerogen model
    Huang, Liang
    Ning, Zhengfu
    Wang, Qing
    Ye, Hongtao
    Chen, Zhili
    Sun, Zheng
    Sun, Fengrui
    Qin, Huibo
    [J]. ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (15)
  • [7] Enhanced gas recovery by CO2 sequestration in marine shale: a molecular view based on realistic kerogen model
    Liang Huang
    Zhengfu Ning
    Qing Wang
    Hongtao Ye
    Zhili Chen
    Zheng Sun
    Fengrui Sun
    Huibo Qin
    [J]. Arabian Journal of Geosciences, 2018, 11
  • [8] Effect of wettability of shale on CO2 sequestration with enhanced gas recovery in shale reservoir: Implications from molecular dynamics simulation
    Shi, Kanyuan
    Chen, Junqing
    Pang, Xiongqi
    Jiang, Fujie
    Hui, Shasha
    Pang, Hong
    Ma, Kuiyou
    Cong, Qi
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2022, 107
  • [9] A new mechanism for enhanced oil recovery by CO2 in shale oil reservoirs
    Mahzari, P.
    Mitchell, T.
    Jones, A.
    Oelkers, E.
    [J]. IOR 2019 - 20th European Symposium on Improved Oil Recovery, 2019,
  • [10] Forecasting CO2 Sequestration with Enhanced Oil Recovery
    Ampomah, William
    McPherson, Brian
    Balch, Robert
    Grigg, Reid
    Cather, Martha
    [J]. ENERGIES, 2022, 15 (16)