Some remarks on Prufer ☆-multiplication domains and class groups

被引:10
|
作者
Anderson, David [2 ]
Fontana, Marco [1 ]
Zafrullah, Muhammad
机构
[1] Univ Roma Tre, Dipartimento Matemat, Rome, Italy
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
star operation; class group; Prufer v-multiplication domain; content formula; valuation domain;
D O I
10.1016/j.jalgebra.2007.10.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be an integral domain with quotient field K and let X be an indeterminate over D. Also, let T:= {T-lambda|lambda is an element of Lambda} be a defining family of quotient rings of D and suppose that * is a finite type star operation on D induced by T. We show that D is a P*MD (respectively, PvMD) if and only if (c(D)(fg))* = (c(D)(f)c(D)(g))* (respectively, (cD (fg))(w) = (c(D)(f)c(D)(g))(w)) for all 0 not equal f, g is an element of K[X]. A more general version of this result is given in the semistar operation setting. We give a method for recognizing PvMD's which are not P*MD's for a certain finite type star operation *. We study domains D for which the *-class group Cl*(D) equals the t-class group Cl-t (D) for any finite type star operation *, and we indicate examples of PvMD's D such that Cl*(D) not subset of Cl-t(D). We also compute Cl-v(D) for certain valuation domains D. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:272 / 295
页数:24
相关论文
共 50 条
  • [41] A class of Prufer domains with nice divisorial ideals
    Gabelli, S
    COMMUTATIVE RING THEORY, 1997, 185 : 313 - 318
  • [42] Prufer *-multiplication domains, Nagata rings, and Kronecker function rings
    Chang, Gyu Whan
    JOURNAL OF ALGEBRA, 2008, 319 (01) : 309 - 319
  • [43] Semigroup rings as almost Prufer v-multiplication domains
    Lim, Jung Wook
    Oh, Dong Yeol
    SEMIGROUP FORUM, 2018, 97 (01) : 53 - 63
  • [44] Some Remarks on Two-Transitive Permutation Groups as Multiplication Groups of Quasigroups
    Hiss, Gerhard
    Luebeck, Frank
    BUILDINGS, FINITE GEOMETRIES AND GROUPS, 2012, 10 : 81 - +
  • [45] Completely integrally closed Prufer v-multiplication domains
    Anderson, D. D.
    Anderson, David F.
    Zafrullah, Muhammad
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (12) : 5264 - 5282
  • [46] ALMOST PRUFER v-MULTIPLICATION DOMAINS AND RELATED DOMAINS OF THE FORM D + DS[Γ*]
    Chang, Gyu Whan
    Lim, Jung Wook
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (07) : 2650 - 2664
  • [47] NUMERICAL SEMIGROUP RINGS AND ALMOST PRUFER V-MULTIPLICATION DOMAINS
    Chang, Gyu Whan
    Kim, Hwankoo
    Lim, Jung Wook
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (07) : 2385 - 2399
  • [48] T-LINKED OVERRINGS AND PRUFER V-MULTIPLICATION DOMAINS
    DOBBS, DE
    HOUSTON, EG
    LUCAS, TG
    ZAFRULLAH, M
    COMMUNICATIONS IN ALGEBRA, 1989, 17 (11) : 2835 - 2852
  • [49] A CHARACTERIZATION OF PRUFER v-MULTIPLICATION DOMAINS IN TERMS OF LINEAR EQUATIONS
    Qiao, Lei
    Shu, Qianyu
    Wang, Fanggui
    JOURNAL OF COMMUTATIVE ALGEBRA, 2020, 12 (03) : 435 - 445
  • [50] Characterization of Prufer multiplication monoids and domains by means of spectral module systems
    Halter-Koch, F
    MONATSHEFTE FUR MATHEMATIK, 2003, 139 (01): : 19 - 31