High resolution schemes for conservation laws with locally varying time steps

被引:80
|
作者
Dawson, C [1 ]
Kirby, R [1 ]
机构
[1] Univ Texas, Texas Inst Computat & Appl Math, Ctr Subsurface Modeling C0200, Austin, TX 78712 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2001年 / 22卷 / 06期
关键词
spatially varying time steps; upwinding; conservation laws;
D O I
10.1137/S1064827500367737
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop upwind methods which use limited high resolution corrections in the spatial discretization and local time stepping for forward Euler and second order time discretizations. L-infinity stability is proven for both time stepping schemes for problems in one space dimension. These methods are restricted by a local CFL condition rather than the traditional global CFL condition, allowing local time refinement to be coupled with local spatial refinement. Numerical evidence demonstrates the stability and accuracy of the methods for problems in both one and two space dimensions.
引用
收藏
页码:2256 / 2281
页数:26
相关论文
共 50 条
  • [41] ON CONVERGENCE OF SEMI-DISCRETE HIGH RESOLUTION SCHEMES WITH VANLEER'S FLUX LIMITER FOR CONSERVATION LAWS
    Jiang, Nan
    Yang, Huanan
    METHODS AND APPLICATIONS OF ANALYSIS, 2005, 12 (01) : 89 - 101
  • [42] New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations
    Kurganov, A
    Tadmor, E
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (01) : 241 - 282
  • [43] SELECTED TOPICS IN APPROXIMATE SOLUTIONS OF NONLINEAR CONSERVATION LAWS. HIGH-RESOLUTION CENTRAL SCHEMES
    Tadmor, Eitan
    NONLINEAR CONSERVATION LAWS AND APPLICATIONS, 2011, 153 : 101 - 122
  • [44] High-Order Multi-resolution Central Hermite WENO Schemes for Hyperbolic Conservation Laws
    Tao, Zhanjing
    Zhang, Jinming
    Zhu, Jun
    Qiu, Jianxian
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [45] Multiresolution schemes for conservation laws
    Wolfgang Dahmen
    Birgit Gottschlich–Müller
    Siegfried Müller
    Numerische Mathematik, 2001, 88 : 399 - 443
  • [46] Multiresolution schemes for conservation laws
    Dahmen, W
    Gottschlich-Müller, B
    Müller, S
    NUMERISCHE MATHEMATIK, 2001, 88 (03) : 399 - 443
  • [47] Composite schemes for conservation laws
    Liska, R
    Wendroff, B
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) : 2250 - 2271
  • [48] Time-varying Riemann solvers for conservation laws on networks
    Garavello, Mauro
    Piccoli, Benedetto
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (02) : 447 - 464
  • [49] High order central schemes for hyperbolic systems of conservation laws
    Bianco, F
    Puppo, G
    Russo, G
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL 1, 1999, 129 : 55 - 64
  • [50] Simple and High-Accurate Schemes for Hyperbolic Conservation Laws
    Feng, Renzhong
    Wang, Zheng
    JOURNAL OF APPLIED MATHEMATICS, 2014,