Quantum technologies with optically interfaced solid-state spins

被引:689
|
作者
Awschalom, David D. [1 ,2 ,3 ]
Hanson, Ronald [4 ,5 ]
Wrachtrup, Joerg [6 ,7 ,8 ]
Zhou, Brian B. [1 ,9 ]
机构
[1] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Inst Mol Engn, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Mat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[4] Delft Univ Technol, QuTech, Delft, Netherlands
[5] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[6] Univ Stuttgart, IQST, Stuttgart, Germany
[7] Univ Stuttgart, Phys Inst 3, Stuttgart, Germany
[8] Max Planck Inst Solid State Res, Stuttgart, Germany
[9] Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
NUCLEAR-MAGNETIC-RESONANCE; ERROR-CORRECTION; SINGLE-PHOTON; COHERENT CONTROL; VACANCY SPIN; ENTANGLEMENT; SPECTROSCOPY; STORAGE; QUBITS; MEMORY;
D O I
10.1038/s41566-018-0232-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spins of impurities in solids provide a unique architecture to realize quantum technologies. A quantum register of electron and nearby nuclear spins in the lattice encompasses high-fidelity state manipulation and readout, long-lived quantum memory, and long-distance transmission of quantum states by optical transitions that coherently connect spins and photons. These features, combined with solid-state device engineering, establish impurity spins as promising resources for quantum networks, information processing and sensing. Focusing on optical methods for the access and connectivity of single spins, we review recent progress in impurity systems such as colour centres in diamond and silicon carbide, rare-earth ions in solids and donors in silicon. We project a possible path to chip-scale quantum technologies through sustained advances in nanofabrication, quantum control and materials engineering.
引用
收藏
页码:516 / 527
页数:12
相关论文
共 50 条
  • [31] ADVANCED OPTICALLY PUMPED SOLID-STATE LASERS
    WALLENSTEIN, R
    APPLIED PHYSICS B-LASERS AND OPTICS, 1994, 58 (05): : 345 - 345
  • [32] Solid-State Lighting: Photonics and Technologies
    Tansu, Nelson
    So, Franky
    JOURNAL OF PHOTONICS FOR ENERGY, 2015, 5
  • [33] Solid-State Quantum Emitters
    Fox, A. Mark
    ADVANCED QUANTUM TECHNOLOGIES, 2025, 8 (02)
  • [34] A solid-state quantum microscope
    Dohun Kim
    Nature Electronics, 2023, 6 : 405 - 406
  • [35] A solid-state quantum microscope
    Kim, Dohun
    NATURE ELECTRONICS, 2023, 6 (06) : 405 - 406
  • [36] Solid-State Quantum Emitters
    Fox, A. Mark
    ADVANCED QUANTUM TECHNOLOGIES, 2025, 8 (02)
  • [37] Assessing the potential of perfect screw dislocations in SiC for solid-state quantum technologies
    Barragan-Yani, Daniel
    Wirtz, Ludger
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [38] Hyperfine-Enhanced Gyroscope Based on Solid-State Spins
    Wang, Guoqing
    Nguyen, Minh-Thi
    Cappellaro, Paola
    PHYSICAL REVIEW LETTERS, 2024, 133 (15)
  • [39] Simultaneous Broadband Vector Magnetometry Using Solid-State Spins
    Schloss, Jennifer M.
    Barry, John F.
    Turner, Matthew J.
    Walsworth, Ronald L.
    PHYSICAL REVIEW APPLIED, 2018, 10 (03):
  • [40] Entangling distant solid-state spins via thermal phonons
    Cao, Puhao
    Betzholz, Ralf
    Zhang, Shaoliang
    Cai, Jianming
    PHYSICAL REVIEW B, 2017, 96 (24)