Exact solutions of Schrodinger equation for a charged particle on a sphere and on a cylinder in uniform electric and magnetic fields

被引:18
|
作者
Schmidt, Alexandre G. M. [1 ]
机构
[1] Univ Fed Fluminense, Dept Fis Volta Redonda, Inst Ciencias Exatas, R Des Ellis Hermydio Figueira 783,Bloco C, BR-27213415 Volta Redonda, RJ, Brazil
关键词
Schrodinger equation; Generalized spheroidal equation; Ince equation; Exact solutions; SPHEROIDAL WAVE-EQUATION; QUANTUM-MECHANICS; 2-CENTER PROBLEM; SEMICONDUCTOR; SURFACE;
D O I
10.1016/j.physe.2018.10.035
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present exact solutions for the Schrodinger equation in the presence of uniform electric and magnetic fields for two distinct surfaces: spherical and cylindrical. For the spherical geometry we solve the generalized spheroidal equation - using a series of associated Legendre functions when both fields are present; and spheroidal functions Ps(theta,phi) for the case where there is only a magnetic field - and study the time-evolution of a gaussian wavepacket. The revival effect takes place exactly at 2 pi. For the cylindrical geometry we manage to solve the Schrodinger equation for a magnetic field pointing off the symmetry axis, namely B = B(1)i + B(o)k and an electric field E = epsilon(0)j. The eigenfunctions are written as products of plane waves, in z-direction, and solutions of Ince equation with complex parameters xi and p.
引用
收藏
页码:200 / 207
页数:8
相关论文
共 50 条
  • [31] Exact solutions of Schrodinger equation for the Makarov potential
    Chen, Chang-Yuan
    Liu, Cheng-Lin
    Lu, Fa-Lin
    PHYSICS LETTERS A, 2010, 374 (11-12) : 1346 - 1349
  • [32] Exact solutions of a generalized nonlinear Schrodinger equation
    Zhang, Shaowu
    Yi, Lin
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [33] Exact solutions of the Schrodinger equation for zero energy
    Pade, J.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 53 (01): : 41 - 50
  • [34] The exact solutions for a nonisospectral nonlinear Schrodinger equation
    Ning, Tong-ke
    Zhang, Weiguo
    Jia, Gao
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1100 - 1105
  • [35] Exact solutions of the Schrodinger equation with irregular singularity
    Schulze-Halberg, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (09) : 2305 - 2325
  • [36] A new class of exact solutions of the Schrodinger equation
    Perepelkin, E. E.
    Sadovnikov, B., I
    Inozemtseva, N. G.
    Tarelkin, A. A.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2019, 31 (03) : 639 - 667
  • [37] Exact solutions of a nonpolynomially nonlinear Schrodinger equation
    Parwani, R.
    Tan, H. S.
    PHYSICS LETTERS A, 2007, 363 (03) : 197 - 201
  • [39] ON EXACT-SOLUTIONS OF THE SCHRODINGER-EQUATION
    ZNOJIL, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (02): : 279 - 292
  • [40] Exact Solutions for the Generalized Derivative Schrodinger Equation
    Zhang, Yuanyuan
    HIS 2009: 2009 NINTH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, VOL 3, PROCEEDINGS, 2009, : 478 - 480