Asymptotics Near ±m of the Spectral Shift Function for Dirac Operators with Non-Constant Magnetic Fields

被引:10
|
作者
Tiedra de Aldecoa, Rafael [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago 690441, Chile
关键词
Dirac operator; Magnetic field; Spectral shift function; LIMITING ABSORPTION PRINCIPLE; DENSITY-OF-STATES; SCHRODINGER-OPERATORS; PERTURBATIONS; FINITENESS; UNIQUENESS;
D O I
10.1080/03605301003758369
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a 3-dimensional Dirac operator H0 with non-constant magnetic field of constant direction, perturbed by a sign-definite matrix-valued potential V decaying fast enough at infinity. Then we determine asymptotics, as the energy goes to +m and -m, of the spectral shift function for the pair (H0+V, H0). We obtain, as a by-product, a generalized version of Levinson's Theorem relating the eigenvalues asymptotics of H0+V near +m and -m to the scattering phase shift for the pair (H0+V, H0).
引用
收藏
页码:10 / 41
页数:32
相关论文
共 28 条